TRANSFAC® release 2024.2
The TRANSFAC® database on transcription factors, their genomic binding sites and DNA-binding motifs (PWMs), contains these new data features:
· JASPAR 2024 matrix library integration
New position frequency matrices from the JASPAR 2024 release either added as matrix entries (446 cases) or hyperlinked to existing counterparts in the TRANSFAC matrix library.
2,045 new human and mouse enhancers have been integrated together with 2,693 high confidence enhancer – promoter interactions (EPI).
· Enhanced human SNP content
The 2023 dbSNP release 156 data for human has been integrated and increases the number of SNPs mapped to promoter, enhancer, and silencer sequences by more than 13,800,000 new single nucleotide variatons compared to the previously used version 155.
Genomic information for genes, promoters, and ChIP fragments for the species human, mouse, rat, pig, macaque, Drosophila, and Arabidopsis is now based on Ensembl release 112.
· Rat genome assembly update
TRANSFAC now uses rat genome assembly mRatBN7.2.
· Additional interactions between human transcription factors
1,299 new human transcription factor interactions have been included from recent publications.
· New TRANSFAC analysis tool
In its new 3.1 release, the MATCH Suite toolbox of TRANSFAC 2.0 was updated with the functionality of extended model organisms’ gene regulation analysis. Now, gene sets coming from Zebrafish, Arabidopsis, Nematoda, Fruit fly or Baker’s yeast can be analyzed based on functional categorization. You can narrow down the site search by selected transcription factors, or you can select the functional categories of your interest and perform search only for transcription factors belonging to those GO terms. As usual, a comprehensive report will be automatically generated with detailed description of the performed analysis steps, and the interactive results visualization mode will allow you to fine-tune the obtained results by applying additional filters.
Most transcription factors (TFs) possess a DNA-binding domain (DBD), which mediates the recognition of specific, short DNA sequence elements in promoter, enhancer, etc. In order to approach the problem of deciphering the underlying DNA-protein recognition code, we have completely revised an earlier TF classification scheme (1,2) by adapting it to the wealth of data that were reported during the last ten years (TFClass; 3-5). TFClass has been implemented at the Dept. of Bioinformatics at the University Medical Center Göttingen (3,6).
Part of this work was done in the context of the
Syscol project, where our partner at the Karolinska institute (Prof. J. Taipale and his team) have characterized the DNA-binding profiles of more than 400 mammalian TFs (7). It will be tempting to compare the similarities of their matrices with the DBD classification reported here, and with our own approaches to classify DNA-binding profiles (8).
References
- Wingender, E., Schoeps, T., Haubrock, M., Krull, M. and Dönitz, J. (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res. 46, D343-D347. Link
- Wingender, E., Schoeps, T., Haubrock, M., Dönitz, J. (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res. 43, D97-D102. Link
- Stegmaier, P., Kel, A., Wingender, E., Borlak, J. (2013) A discriminative approach for unsupervised clustering of DNA sequence motifs. PLoS Comput. Biol. 9, e1002958.
- Jolma, A., et al. (2013) DNA-Binding Specificities of Human Transcription Factors. Cell 152, 327–339. Link
- http://tfclass.bioinf.med.uni-goettingen.de
- http://www.edgar-wingender.de/huTF_classification.html
- Wingender, E. (2013) Criteria for an updated classification of human transcription factor DNA-binding domains. J. Bioinform. Comput. Biol. 11, 1340007. Link
- Wingender, E., Schoeps, T., Dönitz, J. (2013) TFClass: An expandable hierarchical classification of human transcription factors. Nucleic Acids Res. 41, D165-D170. Link
- Heinemeyer, T., Chen, X., Karas, H., Kel, A.E., Kel, O.V., Liebich, I., Meinhardt, T., Reuter, I., Schacherer, F., Wingender, E. (1999) Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res. 27, 318–322. Link
- Wingender, E. (1997) Classification scheme of eukaryotic transcription factors. Mol. Biol. Engl. Tr. 31, 498-512. Link
Wingender, E., Schoeps, T., Haubrock, M., Krull, M. and Dönitz, J. (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res. 46, D343-D347. PubMed
Kaplun, A., Krull, M., Lakshman, K., Matys, V., Lewicki, B., Hogan, J.D. (2016) Establishing and validating regulatory regions for variant annotation and expression analysis. BMC Genomics 17 (Suppl. 2), 393. PubMed
Wingender, E. (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 9, 326-332. PubMed
Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P., Lewicki-Potapov, B., Saxel, H., Kel, A.E., Wingender, E. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108-D110. PubMed
Kel, A.E., Gössling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O.V., Wingender, E. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31, 3576-3579. PubMed
Wingender, E., Dietze, P., Karas, H., Knüppel, R. (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238-241. PubMed
Knüppel, R., Dietze, P., Lehnberg, W., Frech, K., Wingender, E. (1994) TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J. Comput. Biol. 1, 191-198. PubMed
Wingender, E. (1988) Compilation of transcription regulating proteins. Nucleic Acids Res. 16, 1879-1902. PubMed