TRANSFAC® release 2022.1
The TRANSFAC® database on transcription factors, their genomic binding sites and DNA-binding motifs (PWMs), contains these new data features:
- MATCH Suite: Single gene analysis
In its release 2.0 MATCH Suite now supports gene regulation analysis for single genes in addition to the previously introduced gene set studies. Specify the gene of your interest using its gene symbol, Entrez or Ensembl ID, and find the transcription factors responsible for regulation of your gene via its promoter and enhancers/silencers.
You can optionally select the tissue of your interest, the promoter type and region to be used for the analysis, or the GO terms to narrow down the identified transcription factors to the ones belonging to the chosen biological processes.
The analysis results will provide you with lists transcription factors (TFs) and respective binding sites that were predicted to regulate the specified gene in the selected conditions. Interactive visualization in genome browser will allow to observe the predicted and experimentally proven TF binding sites in the promoter and enhancers/silencers of your gene in the specified tissue (if any was selected). Analysis report will provide you with comprehensive information on the performed analysis and the obtained results.
- Extended options to use search results as input for further queries
Transcription factors that bind to regulatory regions of specific genes in ChIP-Seq experiments, can now be queried directly from a gene/protein search result. This extends the possibility to identify regulatory factors for a gene beyond the ones found through DNA binding sites from low-throughput experiments.
- Integration of new human ChIP-Seq experiments from ENCODE
17 new human transcription factor binding site ChIP-Seq experiments released by the ENCODE phase 4 project have been integrated. The data sets comprise 38,319 fragments bound by 17 distinct transcription factors, of which 10 factors were not yet covered by ChIP-Seq data in TRANSFAC.
For 14 of the sets, an existing positional weight matrix for the respective transcription factor was used together with the MATCH tool to predict altogether 28,204 best binding sites inside the fragments.
Predicted best binding sites as well as complete fragments are available in FASTA and BED format via the ChIP Experiment Reports, as are lists of genes in a distance range to the fragments as specified by the user.
Most transcription factors (TFs) possess a DNA-binding domain (DBD), which mediates the recognition of specific, short DNA sequence elements in promoter, enhancer, etc. In order to approach the problem of deciphering the underlying DNA-protein recognition code, we have completely revised an earlier TF classification scheme (1,2) by adapting it to the wealth of data that were reported during the last ten years (TFClass; 3-5). TFClass has been implemented at the Dept. of Bioinformatics at the University Medical Center Göttingen (3,6).
Part of this work was done in the context of the
Syscol project, where our partner at the Karolinska institute (Prof. J. Taipale and his team) have characterized the DNA-binding profiles of more than 400 mammalian TFs (7). It will be tempting to compare the similarities of their matrices with the DBD classification reported here, and with our own approaches to classify DNA-binding profiles (8).
References
- Wingender, E., Schoeps, T., Haubrock, M., Krull, M. and Dönitz, J. (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res. 46, D343-D347. Link
- Wingender, E., Schoeps, T., Haubrock, M., Dönitz, J. (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res. 43, D97-D102. Link
- Stegmaier, P., Kel, A., Wingender, E., Borlak, J. (2013) A discriminative approach for unsupervised clustering of DNA sequence motifs. PLoS Comput. Biol. 9, e1002958.
- Jolma, A., et al. (2013) DNA-Binding Specificities of Human Transcription Factors. Cell 152, 327–339. Link
- http://tfclass.bioinf.med.uni-goettingen.de
- http://www.edgar-wingender.de/huTF_classification.html
- Wingender, E. (2013) Criteria for an updated classification of human transcription factor DNA-binding domains. J. Bioinform. Comput. Biol. 11, 1340007. Link
- Wingender, E., Schoeps, T., Dönitz, J. (2013) TFClass: An expandable hierarchical classification of human transcription factors. Nucleic Acids Res. 41, D165-D170. Link
- Heinemeyer, T., Chen, X., Karas, H., Kel, A.E., Kel, O.V., Liebich, I., Meinhardt, T., Reuter, I., Schacherer, F., Wingender, E. (1999) Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res. 27, 318–322. Link
- Wingender, E. (1997) Classification scheme of eukaryotic transcription factors. Mol. Biol. Engl. Tr. 31, 498-512. Link
Wingender, E., Schoeps, T., Haubrock, M., Krull, M. and Dönitz, J. (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res. 46, D343-D347. PubMed
Kaplun, A., Krull, M., Lakshman, K., Matys, V., Lewicki, B., Hogan, J.D. (2016) Establishing and validating regulatory regions for variant annotation and expression analysis. BMC Genomics 17 (Suppl. 2), 393. PubMed
Wingender, E. (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 9, 326-332. PubMed
Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P., Lewicki-Potapov, B., Saxel, H., Kel, A.E., Wingender, E. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108-D110. PubMed
Kel, A.E., Gössling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O.V., Wingender, E. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31, 3576-3579. PubMed
Wingender, E., Dietze, P., Karas, H., Knüppel, R. (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238-241. PubMed
Knüppel, R., Dietze, P., Lehnberg, W., Frech, K., Wingender, E. (1994) TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J. Comput. Biol. 1, 191-198. PubMed
Wingender, E. (1988) Compilation of transcription regulating proteins. Nucleic Acids Res. 16, 1879-1902. PubMed