GUSAR Models

Additionally to the GUSAR program, we provide ready-trained GUSAR models to predict certain biological activities. These are SAR bases that can be used with the GUSAR software for predictions on acute rat toxicity or antitargets (off-targets).

The acute rat toxicity SAR base can be used for in silico prediction of LD50 values for rats with four types of administration. The training sets were created on the basis of the SYMYX MDL Toxicity Database and data from RTECS and ChemIDPlus.

A quantitative prediction of antitarget interaction for chemical compounds can be done with the other SAR base. The QSAR models for the set of 32 activities (using IC₅₀, K_i or K_{act} values) includes data on about 4,000 chemical compounds interacting with 18 antitarget proteins (13 receptors, 2 enzymes and 3 transporters).

If you want to use these models, please send an e-mail to <u>info@genexplain.com</u> with your name, specifying which model you would like to use.

Acute Rat Toxicity

The SAR base on acute rat toxicity contains information about approximately 12,000 chemical structures with data on acute rat toxicity represented LD50 by (Lethal Dose, 50%) values for four types of administration:

- intravenous
- subcutaneous
- intraperitoneal
- oral

Characteristics of QSAR models for prediction of rat LD50 values (log10 (mmol/kg)) and their validation. N_{train} - number of compounds in the training set; N_{test} - number of compounds in the test set; N_{models} – number of QNA/MNA models; R^2_{train} - average R^2 of the models calculated for the appropriate training set; Q^2_{train} - average Q^2 of the models calculated for the appropriate training set; Coverage - % compounds from the test set in Applicability Domain.

Administration	Ntrain	Ntest	Nmodels		R ² train	Q ² train	R ² test	RMSEtest	Coverage [%]
			QNA	MNA					
Oral	6280	2692	2	3	0.62	0.57	0.59	0.57	97.5
Intraperitoneal	2480	1065	2	4	0.63	0.54	0.57	0.57	96.1
Intravenous	920	394	10	40	0.73	0.66	0.63	0.62	99.2
Subcutaneous	759	325	2	5	0.69	0.59	0.50	0.69	92.0

So	rt: L20%Out de	scending	•	Selecti	ion:		• X			
	Selected Model	Descriptors	Number	R2	Q2	Fisher	SD	V	L20%Out	Т
L	Model 2	MNA,L,V	2480	0.559	0.469	12.977	0.578	344	0.365	
2	Model 3	MNA,L,V	2480	0.544	0.456	12.954	0.587	333	0.363	
3	Model 1	MNA,L,V	2480	0.556	0.467	13.111	0.580	329	0.362	_
4	Model 4	MNA,L,V	2480	0.557	0.466	13.108	0.579	335	0.355	_
5	Model 5	QNA,L,V	2480	0.461	0.396	14.192	0.629	221	0.304	_
6	Model 6	QNA,L,V	2480	0.523	0.434	12.757	0.598	300	0.301	
	Unused Model	Descriptors	Number	R2	Q2	Fisher	SD	V	L20%Out	
	_									
	Save	Ok	Cance	. 1						

With this SAR base, you can make predictions about what concentration of a substance in focus is required to lead to LD50 in rats. If the log10 of this concentration is below zero, the substance is considered as toxic using the given of way administration.

Example: models for Rat IP LD₅₀ Log10(mmol/kg). L = topological length; V = volume of a molecule; R^2 = square of the regression coefficient; Q^2 = cross-validated R^2 ; Fisher = value of Fisher's statistics; SD = standard deviation; V = number of variables in the final regression equation; L10%Out = results of leave 10% out cross-validation.

As with SAR bases you created yourself, you can exclude whole activities and single QNA/MNA models that do not suit your needs with the "Selection" option. Thus, you are able to only use the most predictive models.

GUSAR can create a consensus model to predict one activity, or you can do batch predictions for all chosen activities at once.

Acute Mouse Toxicity

The descriptions given above for the rat toxicity model apply analogously to the mouse model. As for the detailed characteristics, please see table below.

Characteristics of QSAR models for prediction of mouse LD50 values (log10 (mmol/kg)) and their validation. N_{train/test} - number of compounds in the training/test set; N_{models} – number of models; $R^2_{train/test}$ - average R^2 of the models calculated for the appropriate training/test set; Q^2_{train} - average Q^2 of the models calculated for the appropriate training set; RMSE_{test} – root mean square error of the test set; Coverage - % compounds from the test set in Applicability Domain.

Administration	N train	N _{test}	N _{models}	i	R ² train	Q ² train	R ² test	RMSE _{test}	Coverage
			QNA	MNA					[%]
Oral	18188	2021	1	3	0.46	0.43	0.50	0.377	91.5
Intraperitoneal	25086	2787	1	5	0.45	0.43	0.53	0.397	91.6
Intravenous	9621	1069	1	10	0.54	0.50	0.50	0.401	94.5
Subcutaneous	3215	357	6	8	0.67	0.60	0.56	0.549	96.1

Antitargets (off-targets)

This is a SAR base on the affinity of substances to certain antitargets, containing 32 activities. The interactions of substances in focus with antitargets might be the cause of adverse or toxic effects.

Activities are specified as IC_{50} (50% of the inhibitory concentration), K_i (inhibition constant), or K_{act} (activation constant).

Characteristics of QSAR models for antitarget sets.

 N_{train} - number of compounds in the training set; N_{test} - number of compounds in the test set; N_{models} - number of QNA/MNA models; R^2_{train} - average R^2 of the models calculated for the appropriate training set; Q^2_{train} - average Q^2 of the models calculated for the appropriate training set; Coverage - % compounds from the test set in Applicability Domain.

Activity	Ntrain/Ntest	Nmodels		R ² train	Q ² train	R ² test	Coverage
		QNA	MNA				[%]
5-hydroxytryptamine 1B receptor							
antagonist IC50	297/74	3	5	0.83	0.79	0.67	100.0
5-hydroxytryptamine 1B receptor							
antagonist K _i	266/66	3	4	0.73	0.66	0.72	100.0
5-hydroxytryptamine 2A receptor							
antagonist IC50	555/143	6	7	0.83	0.78	0.71	98.6
5-hydroxytryptamine 2A receptor							
antagonist Ki	1010/252	3	10	0.72	0.65	0.59	99.6
5-hydroxytryptamine 2C receptor							
antagonist IC50	128/32	3	15	0.77	0.73	0.58	100.0
5-hydroxytryptamine 2C receptor							
antagonist K _i	487/121	6	8	0.74	0.66	0.62	99.2
alpha1a adrenergic receptor							
antagonist IC ₅₀	438/111	6	10	0.79	0.73	0.72	98.2
alpha1a adrenergic receptor							
antagonist K _i	1366/344	1	4	0.83	0.79	0.80	97.0
alpha1b adrenergic receptor							
antagonist K _i	410/102	5	12	0.73	0.66	0.63	100.0
alpha-2A adrenergic receptor							
antagonist IC ₅₀	109/207	5	11	0.88	0.84	0.75	100.0
alpha-2A adrenergic receptor							
antagonist K _i	525/131	4	13	0.84	0.79	0.77	99.2
amine oxidase [flavin-containing] A							
inhibitor IC ₅₀	186/71	4	5	0.80	0.75	0.72	100.0
amine oxidase [flavin-containing] A							
inhibitor K _i	60/15	2	3	0.73	0.62	0.64	100.0
androgen receptor antagonist IC ₅₀	116/29	2	6	0.79	0.73	0.67	100.0
carbonic anhydrase I activator K _{act}	108/27	4	8	0.98	0.97	0.93	100.0

carbonic anhydrase I inhibitor Ki	935/234	4	7	0.91	0.86	0.86	98.3
carbonic anhydrase II activator K _{act}	104/26	6	14	0.92	0.90	0.91	100.0
carbonic anhydrase II inhibitor K _i	866/217	1	6	0.87	0.79	0.76	98.6
d(1A) dopamine receptor							
antagonist IC ₅₀	126/31	2	9	0.76	0.72	0.80	100.0
d(1A) dopamine receptor							
antagonist K _i	291/73	4	6	0.72	0.66	0.57	100.0
d3 dopamine receptor antagonist Ki	822/206	3	6	0.73	0.66	0.62	98.0
delta-type opioid receptor							
antagonist K _i	1044/261	3	13	0.75	0.70	0.65	98.5
estrogen receptor antagonist IC ₅₀	402/100	2	2	0.66	0.61	0.70	97.0
estrogen receptor antagonist K _i	255/68	2	11	0.76	0.71	0.70	100.0
kappa-type opioid receptor							
antagonist K _i	844/221	3	4	0.74	0.67	0.65	100.0
mu-type opioid receptor antagonist							
IC ₅₀	545/136	2	5	0.67	0.61	0.70	97.8
mu-type opioid receptor antagonist							
Ki	1354/338	1	3	0.69	0.62	0.60	96.7
sodium- and chloride-dependent	_						
GABA transporter 1 antagonist IC ₅₀	79/19	2	8	0.9	0.86	0.89	100.0
sodium-dependent dopamine							
transporter antagonist IC ₅₀	920/230	3	2	0.7	0.65	0.67	98.3
sodium-dependent dopamine							
transporter antagonist K _i	655/164	3	4	0.77	0.69	0.64	100.0
sodium-dependent serotonin		_					
transporter antagonist IC ₅₀	796/199	5	2	0.8	0.75	0.69	97.5
sodium-dependent serotonin							
transporter antagonist Ki	823/206	1	1	0.72	0.65	0.61	95.6

So	rt: Model name	ascending	•	Selecti	on:	•				
	Selected Model	Descriptors	Number	R2	Q2	Fisher	SD	V	L10%Out	Т
L	Model 1	QNA,L,V	297	0.769	0.720	28.551	0.617	31	0.644	
2	Model 2	QNA,L,V	297	0.769	0.715	28.549	0.623	31	0.602	
3	Model 3	QNA,L,V	297	0.782	0.727	26.843	0.611	35	0.608	
ŀ	Model 4	MNA,L,V	297	0.804	0.758	33.930	0.578	32	0.656	
5	Model 5	MNA,L,V	297	0.754	0.708	29.439	0.633	28	0.629	
5	Model 6	MNA,L,V	297	0.761	0.707	26.429	0.629	32	0.609	
7	Model 7	MNA,L,V	297	0.805	0.756	29.081	0.581	37	0.616	
3	Model 8	MNA,L,V	297	0.777	0.728	28.944	0.613	32	0.653	
	Unused Model	Descriptors	Number	R2	Q2	Fisher	SD	V	L10%Out	Т
	Save	Ok	Cance							

Example: models for 5-hydroxytryptamine 1B receptor antagonist IC₅₀. R^2 = square of the regression coefficient; Q^2 = cross-validated R^2 ; Fisher = value of Fisher's statistics; SD = standard deviation; V = number of variables in the final regression equation; L10%Out = results of leave 10% out cross-validation. With this SAR base, you can make predictions about what concentration of a substance is required to lead to an interaction (inhibition or activation) with one of the 18 antitarget proteins included (13 receptors, 3 transporters, 2 enzymes).

As with SAR bases you create yourself, you are able to exclude whole activities and single QNA/MNA models that do not suit your needs with the "Selection" option. Thus, you are able to only use the most predictive models.

GUSAR can create a consensus model to predict one activity, or you can do batch predictions for all chosen activities at once.