TLR3 and TLR4 are promising druggable targets for treating Hepatitis C that control activity of SMAD4, TFCP2 and E2F1 transcription factors on promoters of differentially expressed genes in liver tissue

Demo User geneXplain GmbH info@genexplain.com Data received on 13/08/2019 ; Run on 06/07/2023 ; Report generated on 06/07/2023

Genome Enhancer release 3.2 (TRANSFAC®, TRANSPATH® and HumanPSD[™] release 2023.1)

Abstract

In the present study we applied the software package "Genome Enhancer" to a data set that contains *transcriptomics* data obtained from *liver* tissue. The study is done in the context of *Hepatitis C*. The goal of this pipeline is to identify potential drug targets in the molecular network that governs the studied pathological process. In the first step of analysis pipeline discovers transcription factors (TFs) that regulate genes activities in the pathological state. The activities of these TFs are controlled by so-called master regulators, which are identified in the second step of analysis. After a subsequent druggability checkup, the most promising master regulators are chosen as potential drug targets for the analyzed pathology. At the end the pipeline comes up with (a) a list of known drugs and (b) investigational active chemical compounds with the potential to interact with selected drug targets.

From the data set analyzed in this study, we found the following TFs to be potentially involved in the regulation of the differentially expressed genes: SMAD4, TFCP2, BCL6, E2F1, NANOG and CUX1. The subsequent network analysis suggested

- LPS:lbp:CD14:TLR4:MD-2:MyD88:IRAK-1{pS376}{pT387}
- dsRNA:TLR3:TRIF
- JKAP
- PKACA
- LCMT

as the most promising molecular targets for further research, drug development and drug repurposing initiatives on the basis of identified molecular mechanism of the studied pathology.

Having checked the actual druggability potential of the full list of identified targets, both, via information available in medical literature and via cheminformatics analysis of drug compounds, we have identified the following drugs as the most promising treatment candidates for the studied pathology: Sorafenib, seliciclib and Perindopril.

1. Introduction

Recording "-omics" data to measure gene activities, protein expression or metabolic events is becoming a standard approach to characterize the pathological state of an affected organism or tissue. Increasingly, several of these methods are applied in a combined approach leading to large "multiomics" datasets. Still the challenge remains how to reveal the underlying molecular mechanisms that render a given pathological state different from the norm. The disease-causing mechanism can be described by a re-wiring of the cellular regulatory network, for instance as a result of a genetic or epigenetic alterations influencing the activity of relevant genes. Reconstruction of the disease-specific regulatory networks can help identify potential master regulators of the respective pathological process. Knowledge about these master regulators can point to ways how to block a pathological regulatory cascade. Suppression of certain molecular targets as components of these cascades may stop the pathological process and cure the disease.

Conventional approaches of statistical "-omics" data analysis provide only very limited information about the causes of the observed phenomena and therefore contribute little to the understanding of the pathological molecular mechanism. In contrast, the "upstream analysis" method [1-4] applied here has been deviced to provide a casual interpretation of the data obtained for a pathology state. This approach comprises two major steps: (1) analysing promoters and enhancers of differentially expressed genes for the transcription factors (TFs) involved in their regulation and, thus, important for the process under study; (2) reconstructing the signaling pathways that activate these TFs and identifying master regulators at the top of such pathways. For the first step, the database TRANSFAC® [6] is employed together with the TF binding site identification algorithms Match [7] and CMA [8]. The second step involves the signal transduction database TRANSPATH® [9] and special graph search algorithms [10] implemented in the software "Genome Enhancer".

The "upstream analysis" approach has now been extended by a third step that reveals known drugs suitable to inhibit (or activate) the identified molecular targets in the context of the disease under study. This step is performed by using information from HumanPSD[™] database [5]. In addition, some known drugs and investigational active chemical compounds are subsequently predicted as potential ligands for the revealed molecular targets. They are predicted using a pre-computed database of spectra of biological activities of chemical compounds of a library of 2245 known drugs and investigational chemical compounds from HumanPSD[™] database. The spectra of biological activities for these compounds are computed using the program PASS on the basis of a (Q)SAR approach [11-13]. These predictions can be used for the research purposes - for further drug development and drug repurposing initiatives.

2. Data

For this study the following experimental data was used:

Table 1.	Experimental	datasets	used	in	the	study	/

File name		Data type
E01_Transcri	ptomics_LogFC-Table	Transcriptomics

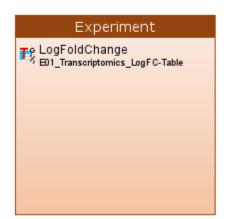


Figure 1. Annotation diagram of experimental data used in this study. With the colored boxes we show those sub-categories of the data that are compared in our analysis.

3. Results

We have analyzed the following condition: Experiment.

3.1. Identification of target genes

In the first step of the analysis **target genes** were identified from the uploaded experimental data. Genes were ranked according to the expression value and 300 genes with highest value (see Table 2) and 300 genes with lowest value (see Table 3) were selected for further analysis.

Table 2. Top ten high expressed genes in Experiment.
See full table \rightarrow

ID	Gene description	Gene symbol	LogFoldChange
ENSG00000137959	interferon induced protein 44 like	IFI44L	6.19
ENSG00000169245	C-X-C motif chemokine ligand 10	CXCL10	6.02
ENSG0000134321	radical S-adenosyl methionine domain containing 2	RSAD2	5.97
ENSG00000137965	interferon induced protein 44	IFI44	3.78
ENSG00000133106	epithelial stromal interaction 1	EPSTI1	3.77
ENSG00000185745	interferon induced protein with tetratricopeptide repeats 1	IFIT1	3.71
ENSG00000187608	ISG15 ubiquitin like modifier	ISG15	3.63
ENSG00000185201	interferon induced transmembrane protein 2	IFITM2	3.54
ENSG0000185885	interferon induced transmembrane protein 1	IFITM1	3.54
ENSG00000135114	2'-5'-oligoadenylate synthetase like	OASL	3.48

Gene description	Gene symbol	LogFoldChange
cytochrome P450 family 7 subfamily A member 1	CYP7A1	-1.09
potassium voltage-gated channel subfamily A member regulatory beta subunit 1	KCNAB1	-1.04
fibrinogen alpha chain	FGA	-0.98
G-patch domain containing 11	GPATCH11	-0.96
CLN8 transmembrane ER and ERGIC protein	CLN8	-0.91
cytochrome P450 family 2 subfamily E member 1	CYP2E1	-0.88
RAD21 antisense RNA 1	RAD21- AS1	-0.88
fatty acid binding protein 4	FABP4	-0.87
eukaryotic translation initiation factor 3 subunit F	EIF3F	-0.86
gigaxonin	GAN	-0.8
	cytochrome P450 family 7 subfamily A member 1 potassium voltage-gated channel subfamily A member regulatory beta subunit 1 fibrinogen alpha chain G-patch domain containing 11 CLN8 transmembrane ER and ERGIC protein cytochrome P450 family 2 subfamily E member 1 RAD21 antisense RNA 1 fatty acid binding protein 4 eukaryotic translation initiation factor 3 subunit F	Gene descriptionsymbolcytochrome P450 family 7 subfamily A member 1CYP7A1potassium voltage-gated channel subfamily A member regulatory beta subunit 1KCNAB1fibrinogen alpha chainFGAG-patch domain containing 11GPATCH11CLN8 transmembrane ER and ERGIC proteinCLN8cytochrome P450 family 2 subfamily E member 1CYP2E1RAD21 antisense RNA 1RAD21- AS1fatty acid binding protein 4FABP4eukaryotic translation initiation factor 3 subunit FEIF3F

3.2. Functional classification of genes

A functional analysis of differentially expressed genes was done by mapping the top high expressed and top low expressed genes to several known ontologies, such as Gene Ontology (GO), disease ontology (based on HumanPSD[™] database) and the ontology of signal transduction and metabolic pathways from the TRANSPATH® database. Statistical significance was computed using a binomial test.

Figures 2-7 show the most significant categories.

High expressed genes in Experiment:

300 top high expressed genes were taken for the mapping.

GO (biological process)

			biological_process G	ene Ontolog	yy treemap				
cytokine production regulation of cy	sitive regulation ulation of type I rtokine interferon fuction production	negative regulation of cytokine production of interleukin-1 interleukin-1 of interleukin-1 of interleukin-1 of cytokine production of interleukin-1 of cytokine production of cytokine	cytokine-mediated signaling pathway	Patrieros ganenas encladas signadro patrixay	cellular response to type I inte		e viral process	respo interferor	nse to n-gamma
regulation of tumor necroits store production regulation production of type I production production regulation of cytokine secretion production production production regulation of regulation of regulation of regulation of regulation of regulation of regulation of regulation of	positive regulation of interleuk interleukin-1 beta secret beta production positive regulation of interleuk interleukin-1 secret production positive regulation of peptide	n-1 regulation of interferon-bet meteriora-alpha production production on of positive regulation interferon-bet positive regulation of of type interferon- positive regulation of of type interferon- positive regulation of positive	type I interferon signaling pathwas cytokine-mediated signalir defense response to virus	tumor necrosis factor-mediated stonaling	cellular response to type I interfere cellular response to type I inter response to organic organic substan- substance	rferon viral lit regulation of c defense respo		cellular re interferor interferor regulation of immune effector process	n-gamma nse to
nterleukin-6 production production regulation of tumor necrosis interleukin-6 production production positive egulation of stator production chartereor.gamma	regulation production regulation of production production production regulation regulation	en regulation of market of equilation of market of regulation of market of the second	defense response	ation positive	regulation of DNA-binding NF-kappaB transcription factor activity	regulation of response to st regulation of d ype 1 Interferon production	n egative regulation response response to	r signa ce	of Immune effective of Immun process ecceptor ling pathw and surface receptor
viral life cycle	of viral genome	encompassing mutualism through parasitism ion regulation modulation a of viral by	of Innate Immune of response res	gulation positive regulation ponse to of innate insub y response to of innate insub y response to ost	factor activity inter- regulation positive of KappaB signification (KappaB signification (KappaB of LeappaB of LeappaB	esponse to erferon-beta terferon-beta terferon-beta iterferon-beta elilular response to	response to nterferon-alpha response to	of response	regulation of respon to stimulu regulation of respon to stimul
negative regulation of viral process	replication regulation of vir genome replicati	on symbiont of viral release entry into host of from host cell negative positive regulation of viral entry regulation of viral entry	Diotio Stimuluo - Diotio Stimuluo -	agnalng pathway ystem proces:	signaling response to external stimulus	ellular response to chemical stimulus viral genome replication	nase/NF-kappaB signaling I-kappaB Inase/NF-kappaB signaling response to stimulus esponse to	chemical response to chemical inflammatory response inflammatory	negatin regulatio biologic proces signal transduct

Figure 2. Enriched GO (biological process) of high expressed genes in Experiment. **Full classification** \rightarrow

TRANSPATH® Pathways (2023.1)

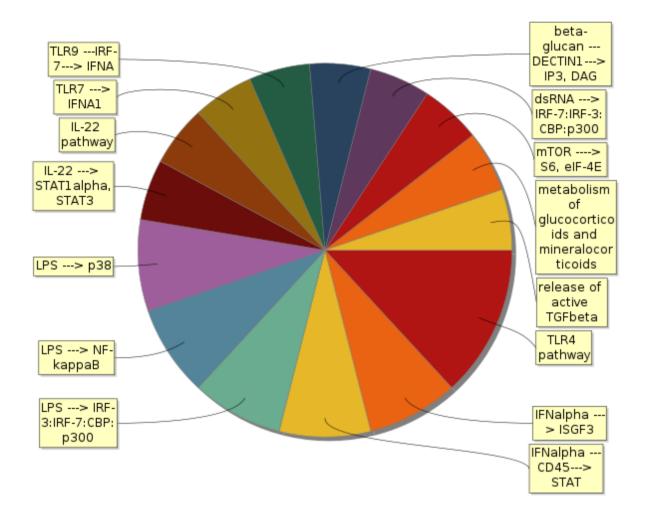


Figure 3. Enriched TRANSPATH® Pathways (2023.1) of high expressed genes in Experiment. Full classification \rightarrow

HumanPSD(TM) disease (2023.1)

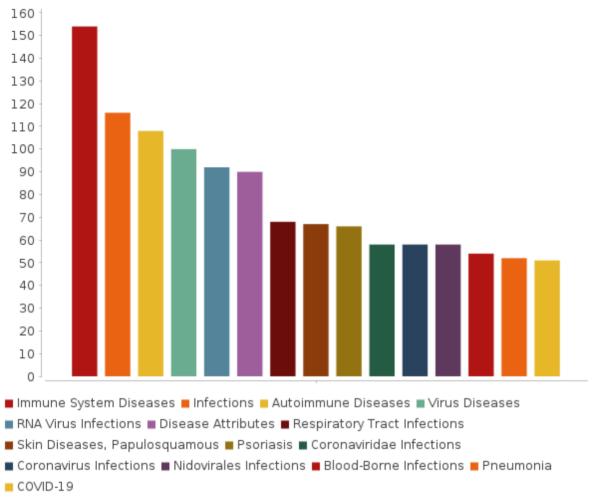


Figure 4. Enriched HumanPSD(TM) disease (2023.1) of high expressed genes in Experiment. The size of the bars correspond to the number of biomarkers of the given disease found among the input set. **Full classification** \rightarrow

Low expressed genes in Experiment:

300 top low expressed genes were taken for the mapping.

GO (biological process)

		-		-	Ł	iological_	process C	iene Ontolo	ogy treemap						
alpha-amino acid metabolic process	cellular amino acid metabolic process	cellular amino acid catabolic process	branched-chain amino acid catabolic process	branched-chain amino acid metabolic process	response to organonitroge compound	n nitro	onse to ogen oound	response to hormone	cellular glucuronida uronic acid	tion me	curonate etabolic rocess	generation of precursor metabolites and energy	derivation by oxidation of organic compounds	cellular amide metabolic process	amide biosyntheti process
carboxylic acid catabolic process	small molecule catabolic process	tyrosine metabolic process	cellular amino acid biosynthetic process	sulfur compound metabolic process	response to endogenous stimulus	cellular response to endogenous stimulus	response insulin	to cellular response to peptide hormone stimulus	metabolic process monosaccharide	flavonoid	metabolio	aerobic respiration r	energy glycogen reserve metabolic metabolic process	peptide transl biosynthetic process	ation peptide metabo proces
organic acid catabolic process	aromatic amino acid family biosynthetic	serine family amino acid metabolic process L-phenylalanine	aromatic amir acid family metabolic process methionine	L-phenylalarine catabolic process	cellular response to organonitrogen compound cellular	cellular response nitrogen compoun response	to d peptic	se to peptide	cellular g cellular hormone metabolic	androge process	n estrog c metabo	metabolite jen organ olic hydro	Xy hydroxy compound bio	amide biosynth waric war	
alpha-amino acid biosynthetic process	glycine metabolic process	rpetabolic process spinna spinna spinna and subini prom	biosynthetic process serine family amino acid	metabolic process regulation of neurotransmitter	response to insulin stimulus cellular respo steroid metabolic	cho		r response to compounds secondary alcohol	process hormone metabolic	regulation of	retinoic ad	cid cid	DIIC process SS alcohol a catabolic bio	alcohol	starvation
sulfur amino acid metabolic process alpha-ar			procets	process	process	pro st	erol s	metabolic process sterol cholestero tabolic process	cellular horr	of po	process sittive C lation of	ofactor coenz	hydroxy compo abolic process zyme miRNA loading	oxidat	onse to nt levels
carboxylic ac metabolic proc	ess n	oxoacid netabolic process	v v	nic acid ic process	steroid catabolic process steroid	pro	icess pi	ocess	cellular resp to insulin stir	nulus ^{signalii}	ng pathway p	etabolic metal process proc	involved in involved in in involved in in involved in involved in in involved in in in in in in in in in in in in in i	ling onto olved in icing by oxidat	process
carboxylic acid	monocarbo	oxylic Ion	g-chain mo	nocarboxylic	cellular amide	~	esponse to amino acid	response to acid chemical	regulation response to 3'-UTR-mediate mRNA stabilization		ar onse to mulus, egulation n catabolic	etaboli¢ proc small molecul netabolic proce	e regulation o	of organonitrogen compound metabolic of organonitrogen	process metabolic process
biosynthetic process	acid metal proces	s bios pr	ty acid synthetic ocess r acid long-cl	acid iosynthetic process naln ^{resga tytroplas}	~	oculation	cellular esponse to	response to thyroxine	3'-UTR	RN stabiliz -mediat	A ation	small molecu etabolic proc cellular proces	ess quality	process	metaboli process
organic acid biosynthetic	small mole biosynthe proces	etic biosy	nthetic fatty a cess proce	icid iolic	cellular amide metabolic tr process positive positive	of anslation	amino acid stimulus response to phenylalanir	looponoo t	drug catabolic process	drug meta proces	abolic	ellular proce	lipid catabo		primary metaboli process
carboxy	fatty aci metabolic pr ic acid b	ocess P	genase 450 hway netic Dros	olic metabolic	regulation of metabolic translational process infegulation of a amide metabolic	translation	derivative cellular response to	response t L-glutamat		exogenou	s drug	cellular netabolic proce cellular etabolic proc	metaboli	ic substance	organonitroge compound biosynthetic process

Figure 5. Enriched GO (biological process) of low expressed genes in Experiment. **Full classification** \rightarrow

TRANSPATH® Pathways (2023.1)

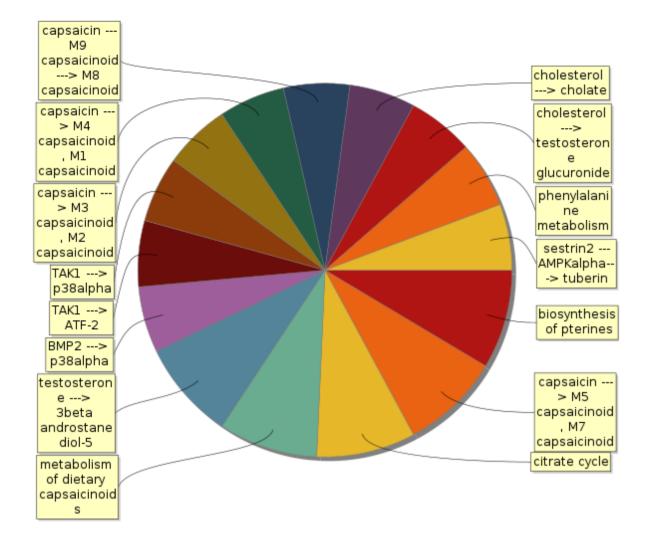
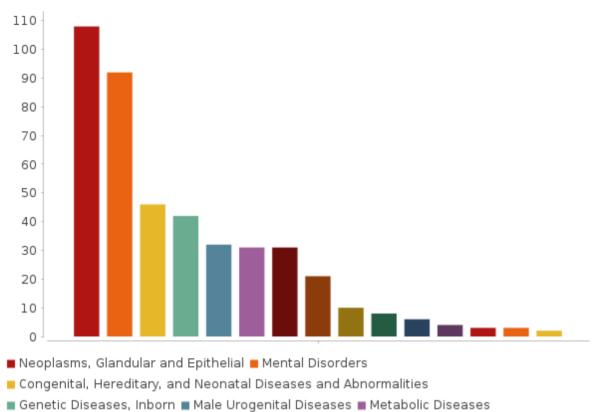
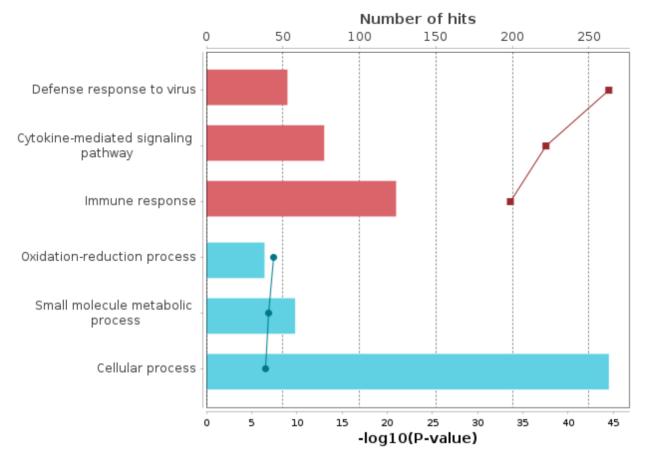



Figure 6. Enriched TRANSPATH® Pathways (2023.1) of low expressed genes in Experiment. Full classification \rightarrow


HumanPSD(TM) disease (2023.1)

- Nutritional and Metabolic Diseases Metabolism, Inborn Errors
- 📕 Amino Acid Metabolism, Inborn Errors 🔳 Brain Diseases, Metabolic, Inborn
- 🔳 Signs and Symptoms, Respiratory 🔳 Hypoxia 🔳 Chondrosarcoma 📕 Geographic Atrophy
- Maple Syrup Urine Disease

Figure 7. Enriched HumanPSD(TM) disease (2023.1) of low expressed genes in Experiment. The size of the bars correspond to the number of biomarkers of the given disease found among the input set. **Full classification** \rightarrow

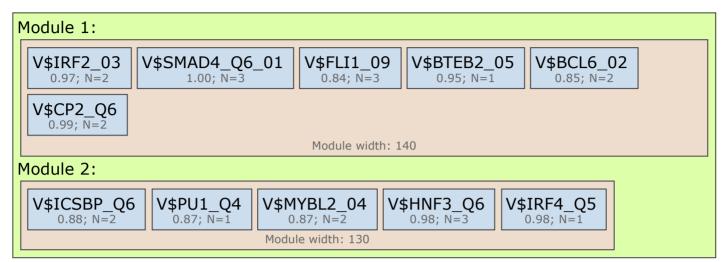
The result of overall Gene Ontology (GO) analysis of the differentially expressed genes of the studied pathology can be summarized by the following diagram, revealing the most significant functional categories overrepresented among the observed (differentially expressed genes):

- High expressed genes in Experiment hits Low expressed genes in Experiment hits
- + High expressed genes in Experiment -log10(P-value)
- Low expressed genes in Experiment -log10(P-value)

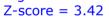
3.3. Analysis of enriched transcription factor binding sites and composite modules

In the next step a search for transcription factors binding sites (TFBS) was performed in the regulatory regions of the *target genes* by using the TF binding motif library of the TRANSFAC® database. We searched for so called **composite modules** that act as potential condition-specific **enhancers** of the *target genes* in their upstream regulatory regions (-1000 bp upstream of transcription start site (TSS)) and identify transcription factors regulating activity of the genes through such **enhancers**.

Classically, **enhancers** are defined as regions in the genome that increase transcription of one or several genes when inserted in either orientation at various distances upstream or downstream of the gene [8]. Enhancers typically have a length of several hundreds of nucleotides and are bound by multiple transcription factors in a cooperative manner [9].


We applied the Composite Module Analyst (CMA) [8] method to detect such potential enhancers, as targets of multiple TFs bound in a cooperative manner to the regulatory regions of the genes of interest. CMA applies a genetic algorithm to construct a generalized model of the enhancers by specifying combinations of TF motifs (from TRANSFAC®) whose sites are most frequently clustered together in the regulatory regions of the studied genes. CMA identifies the transcription factors that through their cooperation provide a synergistic effect and thus have a great influence on the gene regulation process.

Enhancer model potentially involved in regulation of target genes (high expressed genes in Experiment).


To build the most specific composite modules we choose top high expressed genes as the input of CMA algorithm.

The model consists of 2 module(s). Below, for each module the following information is shown: - PWMs producing matches,

- number of individual matches for each PWM,
- score of the best match.

Model score (-p*log10(pval)): 21.99 Wilcoxon p-value (pval): 7.18e-46 Penalty (p): 0.487 Average yes-set score: 4.20 Average no-set score: 2.34 AUC: 0.80 Separation point: 3.15 False-positive: 27.00% False-negative: 25.33% The AUC of the model achieves value significantly higher than expected for a random set of regulatory regions

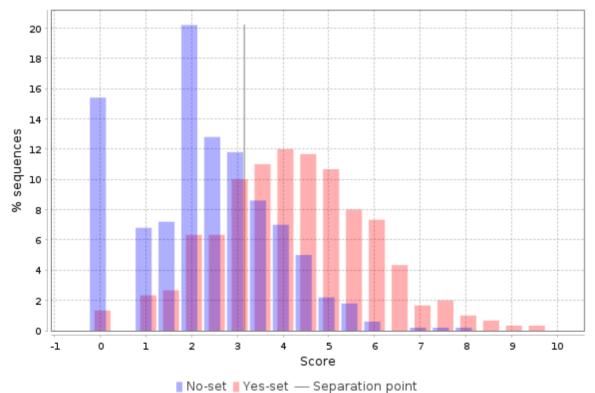
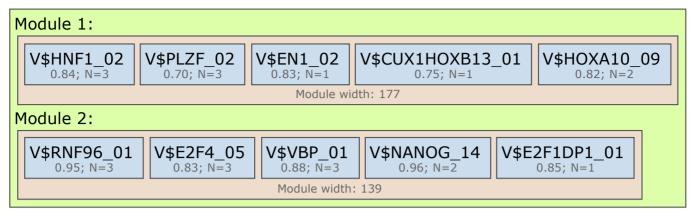


Table 4. List of top ten high expressed genes in Experiment with identified enhancers in their regulatory regions. **CMA score** - the score of the CMA model of the enhancer identified in the regulatory region. **See full table** \rightarrow


Ensembl IDs	Gene symbol	Gene description	CMA score	Factor names
ENSG00000228775	WEE2- AS1	WEE2 antisense RNA 1	9.42	B-Myb(h), IRF-8(h), IRF-4(h), PU.1(h), CP2(h), FLI-1(h), SMAD4(h)
ENSG00000205413	SAMD9	sterile alpha motif domain containing 9	9.26	FOXA1(h),FOXA2(h),FOXA3(h), FLI-1(h), PU.1(h), B-Myb(h), KLF5(h), IRF-2(h), IRF-8(h)
ENSG00000221963	APOL6	apolipoprotein L6	9.02	KLF5(h), FLI-1(h), PU.1(h), IRF- 8(h), IRF-4(h), IRF-2(h), CP2(h)
ENSG00000117595	IRF6	interferon regulatory factor 6	9.01	KLF5(h), SMAD4(h), CP2(h), IRF- 2(h), IRF-8(h), IRF-4(h), PU.1(h)
ENSG00000143093	STRIP1	striatin interacting protein 1	8.61	SMAD4(h), B-Myb(h), FLI-1(h), PU.1(h), IRF-4(h), IRF-2(h), IRF- 8(h)
ENSG00000288596	C8orf44	chromosome 8 open reading frame 44	8.55	FLI-1(h), IRF-2(h), IRF-8(h), PU.1(h), B-Myb(h), SMAD4(h), KLF5(h)
ENSG00000128394	APOBEC3F	apolipoprotein B mRNA editing enzyme catalytic subunit 3F	8.54	FOXA1(h),FOXA2(h),FOXA3(h), SMAD4(h), FLI-1(h), PU.1(h), KLF5(h), IRF-4(h), IRF-2(h)
ENSG00000204482	LST1	leukocyte specific transcript 1	8.41	FOXA1(h),FOXA2(h),FOXA3(h), PU.1(h), SMAD4(h), FLI-1(h), CP2(h)
ENSG00000142089	IFITM3	interferon induced transmembrane protein 3	8.39	IRF-2(h), IRF-8(h), IRF-4(h), FLI- 1(h), PU.1(h), KLF5(h), B-Myb(h)
ENSG00000143001	TMEM61	transmembrane protein 61	8.33	FLI-1(h), PU.1(h), SMAD4(h), CP2(h), IRF-2(h), IRF-8(h), IRF- 4(h)

Enhancer model potentially involved in regulation of target genes (low expressed genes in Experiment).

To build the most specific composite modules we choose top low expressed genes as the input of CMA algorithm.

The model consists of 2 module(s). Below, for each module the following information is shown: - PWMs producing matches,

- number of individual matches for each PWM,
- score of the best match.

Model score (-p*log10(pval)): 18.61 Wilcoxon p-value (pval): 7.48e-38 Penalty (p): 0.501 Average yes-set score: 7.30 Average no-set score: 5.28 AUC: 0.77 Separation point: 6.42 False-positive: 27.00% False-negative: 28.00%

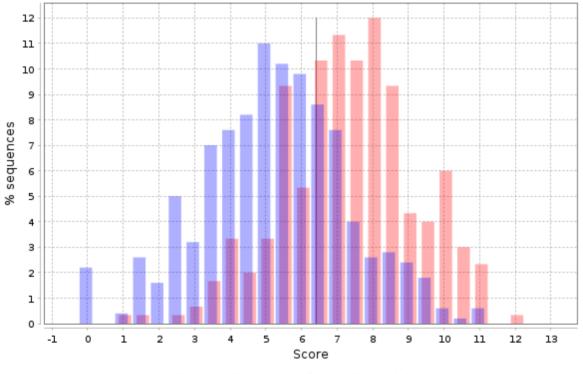


Table 5. List of top ten low expressed genes in Experiment with identified enhancers in their regulatory regions. **CMA score** - the score of the CMA model of the enhancer identified in the regulatory region. **See full table** \rightarrow

Ensembl IDs	Gene symbol	Gene description	CMA score	Factor names
ENSG00000170871	KIAA0232	KIAA0232	13.64	ZBTB16(h), HNF-1alpha(h), EN-1(h), Dp-1(h),E2F-1(h), TEF(h), E2F-4(h), NANOG(h)
ENSG00000165775	FUNDC2	FUN14 domain containing 2	13.56	HNF-1alpha(h), Hox-A10(h), ZBTB16(h), CUX-1(h),Hox-B13(h), EN-1(h), TEF(h), TIF1-beta(h)
ENSG00000122482	ZNF644	zinc finger protein 644	13.35	E2F-4(h), Dp-1(h),E2F-1(h), TIF1- beta(h), TEF(h), HNF-1alpha(h), ZBTB16(h), Hox-A10(h)
ENSG0000036549	ZZZ3	zinc finger ZZ- type containing 3	13.09	E2F-4(h), Dp-1(h),E2F-1(h), NANOG(h), TIF1-beta(h), Hox-A10(h), HNF- 1alpha(h), CUX-1(h),Hox-B13(h)
ENSG00000170961	HAS2	hyaluronan synthase 2	12.9	TIF1-beta(h), E2F-4(h), NANOG(h), Dp- 1(h),E2F-1(h), TEF(h), HNF-1alpha(h), Hox-A10(h)
ENSG00000247315	ZCCHC3	zinc finger CCHC-type containing 3	12.87	HNF-1alpha(h), ZBTB16(h), EN-1(h), Hox-A10(h), CUX-1(h),Hox-B13(h), NANOG(h), Dp-1(h),E2F-1(h)
ENSG00000154240	CEP112	centrosomal protein 112	12.85	TIF1-beta(h), E2F-4(h), Dp-1(h),E2F- 1(h), NANOG(h), ZBTB16(h), Hox- A10(h), EN-1(h)
ENSG00000112701	SENP6	SUMO specific peptidase 6	12.6	HNF-1alpha(h), ZBTB16(h), EN-1(h), CUX-1(h),Hox-B13(h), Hox-A10(h), NANOG(h), Dp-1(h),E2F-1(h)
ENSG00000112837	TBX18	T-box transcription factor 18	12.59	E2F-4(h), Hox-A10(h), HNF-1alpha(h), TEF(h), NANOG(h), Dp-1(h),E2F-1(h), TIF1-beta(h)
ENSG00000138696	BMPR1B	bone morphogenetic protein receptor type 1B	12.58	HNF-1alpha(h), ZBTB16(h), Hox-A10(h), CUX-1(h),Hox-B13(h), EN-1(h), NANOG(h), TEF(h)

On the basis of the enhancer models we identified transcription factors potentially regulating the **target genes** of our interest. We found 13 and 12 transcription factors controlling expression of up- and down-regulated genes respectively (see Tables 6-7).

Table 6. Transcription factors of the predicted enhancer model potentially regulating the differentially expressed genes (high expressed genes in Experiment). **Yes-No ratio** is the ratio between frequencies of the sites in Yes sequences versus No sequences. It describes the level of the enrichment of binding sites for the indicated TF in the regulatory target regions. **Regulatory score** is the measure of involvement of the given TF in the controlling of expression of genes that encode master regulators presented below (through positive feedback loops).

See full table \rightarrow

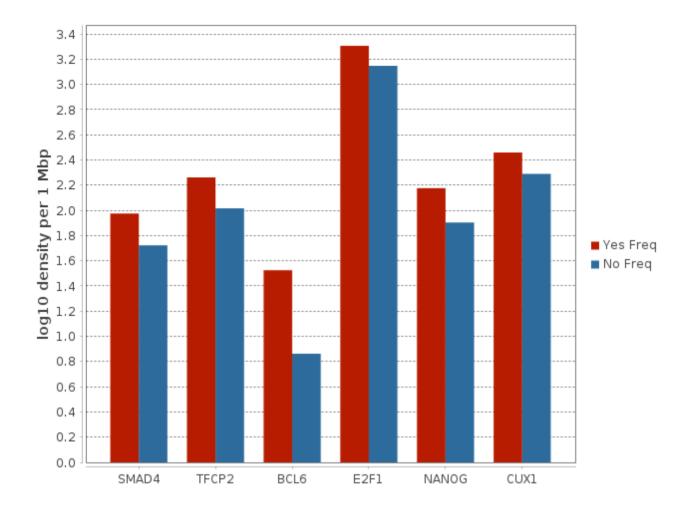

ID	Gene symbol	Gene description	Regulatory score	Yes-No ratio
MO000020402	SMAD4	SMAD family member 4	5.31	1.79
MO000117988	TFCP2	transcription factor CP2	5.1	1.76
MO000026319	BCL6	BCL6 transcription repressor	4.55	4.6
MO000007691	IRF2	interferon regulatory factor 2	4.37	26.42
MO000026229	KLF5	Kruppel like factor 5	4.03	1.91
MO000005191	FLI1	Fli-1 proto-oncogene, ETS transcription factor	4.01	3.14
MO000085616	SPI1	Spi-1 proto-oncogene	3.1	1.63
MO000023424	IRF8	interferon regulatory factor 8	2.75	7.75
MO000021901	MYBL2	MYB proto-oncogene like 2	2.3	1.43
MO000026493	FOXA2	forkhead box A2	1.93	5.85

Table 7. Transcription factors of the predicted enhancer model potentially regulating the differentially expressed genes (low expressed genes in Experiment). **Yes-No ratio** is the ratio between frequencies of the sites in Yes sequences versus No sequences. It describes the level of the enrichment of binding sites for the indicated TF in the regulatory target regions. **Regulatory score** is the measure of involvement of the given TF in the controlling of expression of genes that encode master regulators presented below (through positive feedback loops).

See full table \rightarrow

ID	Gene symbol	Gene description	Regulatory score	Yes-No ratio
MO000004274	E2F1	E2F transcription factor 1	4.56	1.44
MO000134485	NANOG	Nanog homeobox	4.29	1.87
MO000024708	CUX1	cut like homeobox 1	4.22	1.48
MO000069886	TRIM28	tripartite motif containing 28	3.36	1.59
MO000023603	E2F4	E2F transcription factor 4	3.09	1.59
MO000046078	ZBTB16	zinc finger and BTB domain containing 16	3.02	1.24
MO000089495	HOXA10	homeobox A10	2.67	1.62
MO000013458	TFDP1	transcription factor Dp-1	2.16	1.51
MO000082618	HNF1A	HNF1 homeobox A	2.07	2.16
MO000026095	EN1	engrailed homeobox 1	0.65	1.23

The following diagram represents the key transcription factors, which were predicted to be potentially regulating differentially expressed genes in the analyzed pathology: SMAD4, TFCP2, BCL6, E2F1, NANOG and CUX1.

3.4. Finding master regulators in networks

In the second step of the upstream analysis common regulators of the revealed TFs were identified. These master regulators appear to be the key candidates for therapeutic targets as they have a master effect on regulation of intracellular pathways that activate the pathological process of our study. The identified master regulators are shown in Tables 8-9.

Table 8. Master regulators that may govern the regulation of high expressed genes in Experiment. **Total rank** is the sum of the ranks of the master molecules sorted by keynode score, CMA score, transcriptomics data.

See full table \rightarrow

ID	Master molecule name	Gene symbol	Gene description	Total rank	LogFoldChange
MO000033313	PKACA(h)	PRKACA	protein kinase cAMP-activated catalytic subunit alpha	132	0.37
MO000179914	Gwl-isoform1(h)	MASTL	microtubule associated serine/threonine kinase like	149	0.93
MO000176198	JKAP(h)	DUSP22	dual specificity phosphatase 22	152	0.36
MO000020219	Caspase-8(h)	CASP8	caspase 8	167	0.22
MO000041437	dsRNA:TLR3:TRIF	TICAM1, TLR3	toll like receptor 3, toll like receptor adaptor molecule 1	183	0.75
MO000142047	LCMT(h)	LCMT1	leucine carboxyl methyltransferase 1	186	0.27
MO000038322	LPS:lbp:CD14:TLR4:MD- 2:MyD88:IRAK- 1{pS376}{pT387}	CD14, IRAK1, LBP, LY96, MYD88, TLR4	CD14 molecule, MYD88 innate immune signal transduction adaptor, interleukin 1 receptor associated ki	197	0.62
MO000038316	LPS:lbp:CD14:TLR4:MD- 2:TIRAP:IRAK-2	CD14, IRAK2, LBP, LY96, TIRAP, TLR4	CD14 molecule, TIR domain containing adaptor protein, interleukin 1 receptor associated kinase 2, li	199	0.61
MO000079043	PML-4(h)	PML	PML nuclear body scaffold	199	1.35
MO000032632	PKCepsilon(h)	PRKCE	protein kinase C epsilon	202	0.35

Table 9. Master regulators that may govern the regulation of low expressed genes in Experiment. **Total rank** is the sum of the ranks of the master molecules sorted by keynode score, CMA score, transcriptomics data.

ID	Master molecule name	Gene symbol	Gene description	Total rank	LogFoldChange
MO000030927	DNA-PKcs(h)	PRKDC	protein kinase, DNA-activated, catalytic subunit	97	-0.52
MO000104136	cyclosome(h):Fzr1(h)	ANAPC1, ANAPC10, ANAPC11, ANAPC2, ANAPC4, ANAPC5, ANAPC7, CDC16, CDC23, CDC26, CDC27, FZR1	anaphase promoting complex subunit 1, anaphase promoting complex subunit 10, anaphase promoting comp	149	-0.39
MO000031205	Cdc14B(h)	CDC14B	cell division cycle 14B	170	-0.44
MO000045386	plk4(h)	PLK4	polo like kinase 4	170	-0.38
MO000043414	cyclosome(h)	ANAPC1, ANAPC10, ANAPC11, ANAPC2, ANAPC4, ANAPC5, ANAPC7, CDC16, CDC23, CDC26, CDC27	anaphase promoting complex subunit 1, anaphase promoting complex subunit 10, anaphase promoting comp	180	-0.39
MO000032766	AKT-2(h)	AKT2	AKT serine/threonine kinase 2	201	-0.35
MO000256848	plk4-isoform3(h)	PLK4	polo like kinase 4	204	-0.38
MO000256847	plk4-isoform2(h)	PLK4	polo like kinase 4	205	-0.38
MO000141737	plk4-isoform1(h)	PLK4	polo like kinase 4	206	-0.38
MO000044859	PP1-beta(h)	PPP1CB	protein phosphatase 1 catalytic subunit beta	225	-0.36

The intracellular regulatory pathways controlled by the above-mentioned master regulators are depicted in Figures 8 and 9. These diagrams display the connections between identified transcription factors, which play important roles in the regulation of differentially expressed genes, and selected master regulators, which are responsible for the regulation of these TFs.

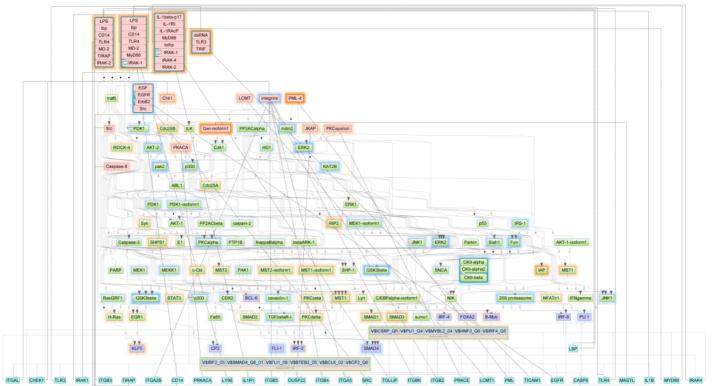


Figure 8. Diagram of intracellular regulatory signal transduction pathways of high expressed genes in Experiment. Master regulators are indicated by red rectangles, transcription factors are blue rectangles, and green rectangles are intermediate molecules, which have been added to the network during the search for master regulators from selected TFs. Orange and blue frames highlight molecules that are encoded by up- and downregulated genes, resp.

See full diagram \rightarrow

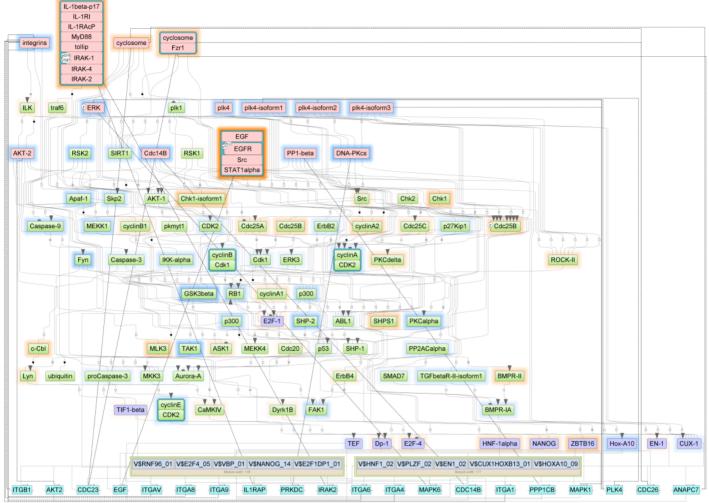


Figure 9. Diagram of intracellular regulatory signal transduction pathways of low expressed genes in Experiment. Master regulators are indicated by red rectangles, transcription factors are blue rectangles, and green rectangles are intermediate molecules, which have been added to the network during the search for master regulators from selected TFs. Orange and blue frames highlight molecules that are encoded by up- and downregulated genes, resp.

See full diagram \rightarrow

4. Finding prospective drug targets

The identified master regulators that may govern pathology associated genes were checked for druggability potential using HumanPSDTM [5] database of gene-disease-drug assignments and PASS [11-13] software for prediction of biological activities of chemical compounds on the basis of a (Q)SAR approach. Respectively, for each master regulator protein we have computed two Druggability scores: HumanPSD Druggability score and PASS Druggability score. Where Druggability score represents the number of drugs that are potentially suitable for inhibition (or activation) of the corresponding target either according to the information extracted from medical literature (from HumanPSDTM database) or according to cheminformatics predictions of compounds activity against the examined target (from PASS software).

The cheminformatics druggability check is done using a pre-computed database of spectra of biological activities of chemical compounds from a library of all small molecular drugs from HumanPSDTM database, 2507 pharmaceutically active known chemical compounds in total. The spectra of biological activities has been computed using the program PASS [11-13] on the basis of a (Q)SAR approach.

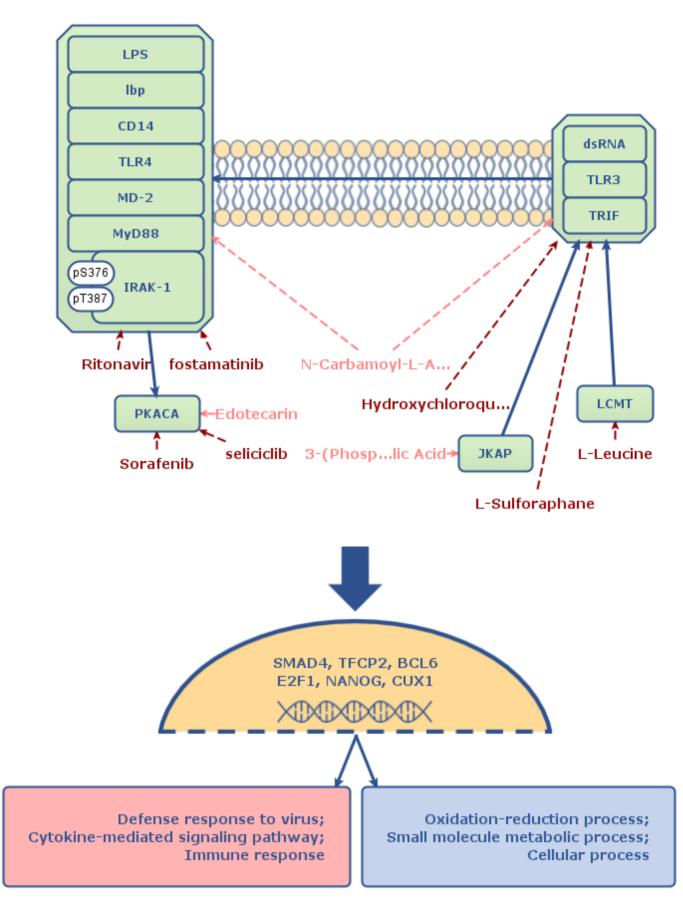
If both Druggability scores were below defined thresholds (see Methods section for the details) such master regulator proteins were not used in further analysis of drug prediction.

As a result we created the following two tables of prospective drug targets (top targets are shown here):

Table 10. Prospective drug targets selected from full list of identified master regulators filtered by Druggability score from HumanPSD[™] database. **Druggability score** contains the number of drugs that are potentially suitable for inhibition (or activation) of the target. The drug targets are sorted according to the **Total rank** which is the sum of three ranks computed on the basis of the three scores: keynode score, CMA score and expression change score (logFC, if present). See Methods section for details.

See	full	tab	$e \rightarrow$	
-----	------	-----	-----------------	--

Gene symbol	Gene Description	Druggability score	Total rank	LogFoldChange
TLR3	toll like receptor 3	3	183	0.75
LCMT1	leucine carboxyl methyltransferase 1	1	186	0.27
TLR4	toll like receptor 4	14	199	0.62
PML	PML nuclear body scaffold	1	199	1.35
LY96	lymphocyte antigen 96	1	199	0.62
CD14	CD14 molecule	3	199	0.62
CD14	CD14 molecule	3	199	0.62


Table 11. Prospective drug targets selected from full list of identified master regulators filtered by Druggability score predicted by PASS software. Here, the **Druggability score** for master regulator proteins is computed as a sum of PASS calculated probabilities to be active as a target for various small molecular compounds. The drug targets are sorted according to the **Total rank** which is the sum of three ranks computed on the basis of the three scores: keynode score, CMA score and expression change score (logFC, if present). See Methods section for details. **See full table** \rightarrow

Gene Druggability Total LogFoldChange **Gene Description** symbol score rank toll like receptor 3 183 0.75 TLR3 4.81 199 TLR4 toll like receptor 4 4.81 0.62 CCND3 cyclin D3 1.51 204 0.79 Janus kinase 2 224 0.54 JAK2 1.07 HCK proto-oncogene, Src family HCK 1.07 236 0.26 tyrosine kinase protein kinase cAMP-activated 0.46 284 0.37 PRKACA catalytic subunit alpha

Below we represent schematically the main mechanism of the studied pathology. In the schema we considered the top two drug targets of each of the two categories computed above. In addition we have added two top identified master regulators for which no drugs may be identified yet, but that are playing the crucial role in the molecular mechanism of the studied pathology. Thus the molecular mechanism of the studied pathology was predicted to be mainly based on the following key master regulators:

- LPS:lbp:CD14:TLR4:MD-2:MyD88:IRAK-1{pS376}{pT387}
- dsRNA:TLR3:TRIF
- JKAP
- PKACA
- LCMT

This result allows us to suggest the following schema of affecting the molecular mechanism of the studied pathology:

Drugs which are shown on this schema: L-Leucine, Hydroxychloroquine, fostamatinib, 3-(Phosphonomethyl)Pyridine-2-Carboxylic Acid, Ritonavir, Sorafenib, seliciclib, L-Sulforaphane, N-Carbamoyl-L-Aspartate and Edotecarin, should be considered as a prospective research initiative for further drug repurposing and drug development. These drugs were selected as top matching treatments to the most prospective drug targets of the studied pathology, however, these results should be considered with special caution and are to be used for research purposes only, as there is not enough clinical information for adapting these results towards immediate treatment of patients. The drugs given in dark red color on the schema are FDA approved drugs or drugs which have gone

through various phases of clinical trials as active treatments against the selected targets.

The drugs given in pink color on the schema are drugs, which were cheminformatically predicted to be active against the selected targets.

5. Identification of potential drugs

In the last step of the analysis we strived to identify known activities as well as drugs with cheminformatically predicted activities that are potentially suitable for inhibition (or activation) of the identified molecular targets in the context of specified human diseases(s).

Proposed drugs are top ranked drug candidates, that were found to be active on the identified targets and were selected from 4 categories:

- 1. FDA approved drugs or used in clinical trials drugs for the studied pathology;
- 2. Repurposing drugs used in clinical trials for other pathologies;
- 3. Drugs, predicted by PASS to be active against identified drug targets and against the studied pathology;
- 4. Drugs, predicted by PASS to be active against identified drug targets but for other pathologies.

Proposed drugs were selected on the basis of Drug rank which was computed from the ranks sum based on the individual ranks of the following scores:

- Target activity score (depends on ranks of all targets that were found for the selected drug);
- Disease activity score (weighted sum of number of clinical trials on disease(s) under study where the selected drug is known to be applied or PASS Disease activity score cheminformatically predicted property of the compound to be active against the studied disease(s));
- Clinical validity score (applicable only for drugs predicted on the basis of literature curation in HumanPSD[™] database (Tables 12 and 13), reflects the number of the highest clinical trials phase on which the drug was tested for any pathology).

You can refer to the Methods section for more details on drug ranking procedure.

Based on the Drug rank, a numerical value of Drug score was calculated, which reflects the potential activity of the respective drug on the overall molecular mechanism of the studied pathology. Drug score values belong to the range from 1 to 100 and are calculated as a quotient of maximum drug rank and the drug rank of the given drug multiplied by 100.

Top drugs of each category are given in the tables below:

Drugs approved in clinical trials

Table 12. FDA approved drugs or drugs used in clinical trials for the studied pathology (most promising treatment candidates selected for the identified drug targets on the basis of literature curation in HumanPSD[™] database)

See full table \rightarrow

	e fuil table	\rightarrow		
Name	Target names	Drug score	Disease activity score	Disease trial phase
Sorafenib	STK10, TEC, ROCK2, JAK3, PRKACA, MAP3K11, SYK, CSK, MAP4, PKA3, MAP2K6, PKN1, TYK2, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, PRKCZ, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK12, PLK3, WEE1, STK4, MAPK12, PLK3, WEE1, STK4, MAPK2, CSNK1G1, MAPK10, PRKCD, LYN, MAPKAPK2, CHEK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7, RPS6KA1, CSNK1D, EGFR, HCK, CHEK1, JAK2, PTK6, PKMYT1, RPS6KB1, HIPK2, EPHB2, MERTK, PRKCE, BRAF, MAPK13,	97	3	Phase 2: Hepatitis C, Acute Disease, Adenocarcinoma, Adenocarcinoma of Lung, Adenocarcinoma, Follicular, Adenoma, Adenoma, Liver Cell, Adrenal Cortex Neoplasms, Adrenocortical Carcinoma, Astrocytoma, Bile Duct Neoplasms, Biliary Tract Neoplasms, Breast Neoplasms, Male, Carcinoid Tumor, Carcinoma, Carcinoma, Ductal, Carcinoma, Hepatocellular, Carcinoma, Ductal, Carcinoma, Medullary, Carcinoma, Neuroendocrine, Carcinoma, Non-Small- Cell Lung, Carcinoma, Ovarian Epithelial, Carcinoma, Renal Cell, Carcinoma, Small Cell, Carcinoma, Renal Cell, Carcinoma, Transitional Cell, Carcinoma, Verrucous, Carcinosarcoma, Central Nervous System Neoplasms, Cholangiocarcinoma, Colonic Neoplasms, Colorectal Neoplasms, Desmoplastic Small Round Cell Tumor, Digestive System Neoplasms, Cholangiocarcinoma, Colonic Neoplasms, Colorectal Neoplasms, Desmoplastic Small Round Cell Tumor, Digestive System Neoplasms, Biseose Progression, Endocrine Gland Neoplasms, Fibroma, Fibrosarcoma, Fibrosis, Galibladder Neoplasms, Gastrinoma, Gastrointestinal Neoplasms, Gastrointestinal Stromal Tumors, Glioblastoma, Glioma, Gliosarcoma, Glucagonoma, Head and Neck Neoplasms, Hemangiosarcoma, Hepatopulmonary Syndrome, Histiocytoma, Histiocytoma, Benign Fibrous, Histiocytoma, Malignant Fibrous, Hypertension, Hypertension, Portal, Hypopharyngeal Neoplasms, Immunoblastic Lymphadenopathy, Insulinoma, Intestinal Neoplasms, Keloid, Kidney Diseases, Kidney Neoplasms, Klatskin Tumor, Laryngeal Diseases, Kidney Neoplasms, Keloid, Kidney Diseases, Liver Neoplasms, Leuwemia, Myelogenous, Chronic, BCR-ABL Positive, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Leukemia, Myelomonocytic, Chronic, Leukemia, Myelomonocytic, Juvenile, Leukemia-Lymphoma, Adult T-Cell, Liver Cirrhosis, Liver Diseases, Liver Neoplasms, Lung Neoplasms, Lymphoma, T- Cell, Diffuse, Lymphoma, Large-Cell, Anaplastic, Lymphoma, Large-Cell, Immunoblastic, Lymphoma, T- Cell, Lymphoma, T-Cell, Cutaneous, Lymphoma, T- Cell, Lymphoma, T-Cell, Cutaneo

	ZAP70, RET			Myeloproliferative Disorders, Myosarcoma, Nasopharyngeal Carcinoma, Nasopharyngeal Neoplasms, Neoplasm Metastasis, Neoplasms, Neoplasms by Histologic Type, Neoplasms by Site, Neoplasms, Glandular and Epithelial, Neoplasms, Plasma Cell, Neoplasms, Second Primary, Neoplasms, Squamous Cell, Neoplasms, Unknown Primary, Nerve Sheath Neoplasms, Nervous System Neoplasms, Neuroblastoma, Neuroectodermal Tumors, Neuroectodermal Tumors, Primitive, Neuroectodermal Tumors, Primitive, Peripheral, Neuroendocrine Tumors, Neurofibroma, Neurofibromatoses, Neurofibromatosis 1, Neurofibrosarcoma, Oropharyngeal Neoplasms, Osteosarcoma, Ovarian Neoplasms, Pancreatic Neoplasms, Paranasal Sinus Neoplasms, Peritoneal Neoplasms, Pharyngeal Neoplasms, Plasmablastic Lymphoma, Plasmacytoma, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Preleukemia, Prostatic Neoplasms, Prostatic Neoplasms, Castration- Resistant, Rectal Neoplasms, Recurrence, Retroviridae Infections, Rhabdomyosarcoma, Rhabdomyosarcoma, Embryonal, Salivary Gland Neoplasms, Sarcoma, Sarcoma, Ewing, Sarcoma, Synovial, Skin Neoplasms, Small Cell Lung Carcinoma, Somatostatinoma, Squamous Cell Carcinoma of Head and Neck, Stomach Neoplasms, Thyroid Cancer, Papillary, Thyroid Carcinoma, Anaplastic, Thyroid Diseases, Thyroid Neoplasms, Tongue Neoplasms, Urethral Neoplasms, Urinary Bladder Neoplasms, Urethral Neoplasms, Urinary Bladder Neoplasms, Vaccinia, Vipoma,
Erlotinib	STK10, TEC, JAK3, PRKACA, MAP3K11, SYK, CSK, MAPK3, MAP2K6, PKN1, TYK2, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK12, PLK3, WEE1, STK4, MAPK7, PRKCD, LYN, MAPKAPK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7,	96	3	Wilms Tumor Phase 2: Hepatitis C, Adenocarcinoma, Adenocarcinoma of Lung, Adenocarcinoma, Bronchiolo-Alveolar, Adenocarcinoma, Mucinous, Adenoma, Adenomatous Polyposis Coli, Adenomatous Polyps, Astrocytoma, Bile Duct Neoplasms, Biliary Tract Neoplasms, Brain Abscess, Brain Neoplasms, Breast Neoplasms, Brenner Tumor, Carcinoid Tumor, Carcinoma, Carcinoma, Adenoid Cystic, Carcinoma, Adenosquamous, Carcinoma, Basal Cell, Carcinoma, Ductal, Carcinoma, Endometrioid, Carcinoma, Hepatocellular, Carcinoma, Large Cell, Carcinoma, Mucoepidermoid, Carcinoma, Non-Small-Cell Lung, Carcinoma, Ovarian Epithelial, Carcinoma, Renal Cell, Carcinoma, Small Cell, Carcinoma, Nenal Cell, Carcinoma, Transitional Cell, Carcinoma, Verrucous, Central Nervous System Neoplasms, Cholangiocarcinoma, Colonic Neoplasms, Colorectal Neoplasms, Cystadenocarcinoma, Cystadenocarcinoma, Mucinous, Cystadenocarcinoma, Serous, Cysts, Dermoid Cyst, Diffuse Intrinsic Pontine Glioma, Digestive System Diseases, Disease Progression, Drug-Related Side Effects and Adverse Reactions, Endocrine Gland Neoplasms, Endometrial Neoplasms, Ependymoma, Esophageal Diseases, Esophageal Neoplasms, Fibrosarcoma, Fibrosis, Gallbladder Neoplasms, Gastrointestinal Neoplasms, Glioblastoma, Gliosarcoma, Granuloma, Head and Neck Neoplasms, Hematologic Neoplasms, Hemorrhagic Fever, Ebola, Hepatitis, Hepatitis A, Hepatitis C, Chronic, Hepatitis, Chronic,

	RPS6KA1, ILK, CSNK1D, EGFR, HCK, CHEK1, JAK2, PTK6, BIRC5, PKMYT1, RIPK2, EPHB2, MERTK, PRKCE, BRAF, ZAP70, RET			Hypersensitivity, Infections, Intestinal Neoplasms, Kidney Neoplasms, Klatskin Tumor, Laryngeal Diseases, Laryngeal Neoplasms, Leiomyoma, Leiomyomatosis, Leukemia, Leukemia, Myeloid, Leukemia, Myeloid, Acute, Leukemia, Myeloid, Leukemia, Myeloid, Acute, Leukemia, Promyelocytic, Acute, Leukemia, Myelomonocytic, Chronic, Leukemia, Myelomonocytic, Juvenile, Leukemia, Promyelocytic, Acute, Liver Cirrhosis, Liver Neoplasms, Lung Neoplasms, Lymphoma, Lymphoma, Non-Hodgkin, Medulloblastoma, Melanoma, Meningeal Carcinomatosis, Meningioma, Mesothelioma, Mesothelioma, Malignant, Metaplasia, Mixed Tumor, Mullerian, Mouth Neoplasms, Mucoepidermoid Tumor, Mullerian, Mouth Neoplasms, Mucoepidermoid Tumor, Mullep Endocrine Neoplasia, Multiple Myeloma, Myelodysplastic Syndromes, Myoma, Myosarcoma, Nasopharyngeal Carcinoma, Nasopharyngeal Neoplasms, Neoplasm Metastasis, Neoplasm Recurrence, Local, Neoplasms, Neoplasms, Germ Cell and Embryonal, Neoplasms, Second Primary, Neoplasms, Squamous Cell, Neoplasms, Unknown Primary, Nerve Sheath Neoplasms, Nervous System Neoplasms, Neuroblastoma, Neuroectodermal Tumors, Neuroectodermal Tumors, Primitive, Neuroendocrine Tumors, Neurofibrosarcoma, Oligodendroglioma, Oropharyngeal Neoplasms, Pelvic Neoplasms, Pancreatic Neoplasms, Papilloma, Inverted, Paranasal Sinus Neoplasms, Pelvic Neoplasms, Pericardial Effusion, Preitoneal Neoplasms, Pharyngeal Neoplasms, Pleural Effusion, Pleural Effusion, Malignant, Polycythemia, Polycythemia Vera, Polyps, Precancerous Conditions, Preleukemia, Prostatic Neoplasms, Prostatic Neoplasms, Castration-Resistant, Psoriasis, Rectal Neoplasms, Castration-Resistant, Psoriasis, Rectal Neoplasms, Recurrence, Rhabdomyosarcoma, Salivary Gland Neoplasms, Small Cell Lung Carcinoma, Squamous Cell Carcinoma of Head and Neck, Stomach Neoplasms, Syndrome, Thymoma, Thymus Neoplasms, Tongue Neoplasms, Triple Negative Breast Neoplasms, Urinary Bladder Neoplasms, Virus Diseases, Wilms Tumor
Sirolimus	MAPK10, ROCK2, HIPK2, PRKACA, ITGAL, IL10, AURKB, RPS6KA1, MAPK13, PRKCZ, CSNK1D, MAPK12, CHEK1, MAPKAPK2, CSK, CHEK2, MAPK3, STK3, RPS6KB1	92	4	Phase 4: Hepatitis C, Acute Coronary Syndrome, Angina Pectoris, Angina, Unstable, Angiomyolipoma, Arterial Occlusive Diseases, Arteriosclerosis, Communicable Diseases, Congenital Abnormalities, Connective Tissue Diseases, Constriction, Pathologic, Coronary Artery Disease, Coronary Disease, Coronary Restenosis, Coronary Stenosis, Cytomegalovirus Infections, Delayed Graft Function, Diabetes Mellitus, Diabetes Mellitus, Type 1, Dyslipidemias, Fibroma, Fibrosis, Gastrointestinal Neoplasms, Graft vs Host Disease, HIV Infections, Heart Diseases, Hemangioendothelioma, Hemangioma, Hemoglobinuria, Hemoglobinuria, Paroxysmal, Hepatitis, Hepatitis A, Hyperlipidemias, Hypertension, Infarction, Infections, Inflammation, Influenza, Human, Intestinal Neoplasms, Ischemia, Kasabach- Merritt Syndrome, Kidney Diseases, Kidney Failure, Chronic, Leiomyoma, Leiomyomatosis, Lipoma, Liver Diseases, Lung Diseases, Lung Diseases, Interstitial, Lymphangioma, Lymphatic Abnormalities, Lymphoma, Lymphoma, Mantle-Cell, Lymphoma, Non-Hodgkin, Myocardial Infarction, Myocardial Ischemia, Myofibroma, Myoma, Neoplasms, Nevus, Nevus, Blue,

				Peutz-Jeghers Syndrome, Recurrence, Red-Cell Aplasia, Pure, Renal Insufficiency, Renal Insufficiency, Chronic, Sarcoma, Sarcoma, Kaposi, Skin Neoplasms, Syndrome, Thrombocytopenia, Tuberous Sclerosis, Vascular Malformations, Virus Diseases
Pirfenidone	MAPK12, TNF, MAPK13, FURIN	84	2	 Phase 2: Hepatitis C, Albinism, Albinism, Oculocutaneous, Alveolitis, Extrinsic Allergic, Anthracosis, Arthritis, Arthritis, Rheumatoid, Brain Abscess, Breast Cancer Lymphedema, Breast Neoplasms, Bronchiolitis, Bronchiolitis Obliterans, Burns, COVID-19, Carcinoma, Non-Small-Cell Lung, Cardiomyopathies, Cardiomyopathy, Hypertrophic, Diabetic Foot, Diabetic Nephropathies, Edema, Fibroma, Fibrosis, Foot Ulcer, Glomerulosclerosis, Focal Segmental, Heart Failure, Hepatitis, Hepatitis A, Hepatitis C, Chronic, Hermanski-Pudlak Syndrome, Hypersensitivity, Hypertension, Hypertension, Pulmonary, Hypertrophy, Idiopathic Pulmonary Fibrosis, Infarction, Kidney Diseases, Leiomyoma, Liver Cirrhosis, Liver Diseases, Lung Diseases, Lung Diseases, Interstitial, Lung Injury, Lymphedema, Metabolism, Inborn Errors, Multiple Sclerosis, Muscular Diseases, Neurofibroma, Plexiform, Neurofibromatoses, Neurofibromatosis 1, Pancreatitis, Platelet Storage Pool Deficiency, Pneumoconiosis, Pneumonia, Proteinuria, Pulmonary Fibrosis, Rage, Renal Insufficiency, Renal Insufficiency, Chronic, Respiration Disorders, Respiratory Tract Diseases, ST Elevation Myocardial Infarction, Systemic, Scleroderma, Localized, Scleroderma, Systemic, Sclerosis, Syndrome, Ulcer, Wounds and Injuries
IDN-6556	CASP7, CASP8, CASP1	81	2	Phase 2: Hepatitis C, Carcinoma, Hepatocellular, Cholestasis, Diabetes Mellitus, Fatty Liver, Fatty Liver, Alcoholic, Fibrosis, Hepatic Insufficiency, Hepatitis, Hepatitis A, Hepatitis C, Chronic, Hepatitis, Alcoholic, Hypertension, Hypertension, Portal, Liver Cirrhosis, Liver Diseases, Liver Failure, Liver Failure, Acute, Non- alcoholic Fatty Liver Disease

alcoholic Fatty Liver Disease The **Disease trial phase** column reflects the maximum clinical trials phase in which the drug was studied for the analyzed pathology.

<u>Repurposing drugs</u>

Table 13. Repurposed drugs used in clinical trials for other pathologies (prospective drugs against the identified drug targets on the basis of literature curation in HumanPSDTM database) See full table \rightarrow

		_	
Name	Target names	Drug score	Maximum trial phase
seliciclib	STK10, TEC, ROCK2, JAK3, PRKACA, MAP3K11, CDK4, SYK, CSK, MAPK3, MAP2K6, PKN1, TYK2, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, PRKCZ, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK7, PRKCD, LYN, MAPKAPK2, CHEK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7, RPS6KA1, CSNK1D, EGFR, HCK, CHEK1, JAK2, PTK6, PKMYT1, RPS6KB1, HIPK2, RIPK2, EPHB2, MERTK, PRKCE, BRAF, MAPK13, ZAP70, RET	93	Phase 2: ACTH-Secreting Pituitary Adenoma, Adenoma, Carcinoma, Non-Small-Cell Lung, Cystic Fibrosis, Cysts, Fibrosis, Pituitary ACTH Hypersecretion, Pituitary Neoplasms
ruboxistaurin	STK10, TEC, ROCK2, JAK3, PRKACA, MAP3K11, SYK, CSK, MAPK3, MAP2K6, PKN1, TYK2, PRKCG, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, PRKCZ, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK7, PRKCD, LYN, MAPKAPK2, CHEK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7, RPS6KA1, CSNK1D, EGFR, HCK, CHEK1,	93	Phase 3: Diabetes Mellitus, Diabetes Mellitus, Type 1, Diabetes Mellitus, Type 2, Diabetic Neuropathies, Diabetic Retinopathy, Edema, Macular Edema, Nervous System Diseases, Peripheral Nervous System Diseases, Retinal Diseases

	JAK2, PTK6, PKMYT1, RPS6KB1, HIPK2, RIPK2, EPHB2, MERTK, PRKCE, BRAF, MAPK13, ZAP70, RET		
1-(5-Tert- Butyl-2-P- Tolyl-2h- Pyrazol-3- YI)-3-[4-(2- Morpholin-4 YI-Ethoxy)- Naphthalen- 1-YI]-Urea	- CHEK2, STK3, MAPK10, PRKCQ,	92	Phase 2: Arthritis, Arthritis, Rheumatoid, Psoriasis
Tofacitinib	STK10, TEC, ROCK2, JAK3, PRKACA, MAP3K11, SYK, CSK, MAPK3, MAP2K6, PKN1, TYK2, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK7, PRKCD, LYN, MAPKAPK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7, RPS6KA1, CSNK1D, EGFR, HCK, CHEK1, JAK2, PTK6, PKMYT1, RPS6KB1, RIPK2, EPHB2, MERTK,	92	Phase 4: Alopecia, Alopecia Areata, Aortic Arch Syndromes, Arteritis, Arthritis, Arthritis, Psoriatic, Arthritis, Rheumatoid, COVID-19, Colitis, Colitis, Ulcerative, Disease, Embolism, Granuloma, Granulomatosis with Polyangiitis, Infections, Lung Diseases, Lung Diseases, Interstitial, Necrosis, Rheumatic Fever, ST Elevation Myocardial Infarction, Spondylarthritis, Spondylitis, Spondylitis, Ankylosing, Systemic Vasculitis, Takayasu Arteritis, Thromboembolism, Ulcer, Vasculitis

	PRKCE, BRAF, MAPK13, ZAP70, RET		
Flavopiridol	STK10, TEC, JAK3, PRKACA, MAP3K11, CDK4, SYK, CSK, MAPK3, MAP2K6, PKN1, TYK2, SRC, CSNK2A2, MAPK4, PRKD3, CSNK1G2, STK11, CSNK1G1, MAPK12, PLK3, WEE1, STK4, MAPK7, PRKCD, LYN, MAPKAPK2, STK3, MAPK10, PRKCQ, CSNK1E, EPHA4, MAP2K4, PDGFRA, AURKB, CDK7, RPS6KA1, CSNK1D, EGFR, HCK, CHEK1, JAK2, PTK6, PKMYT1, RIPK2, EPHB2, MERTK, PRKCE, BRAF, XIAP, ZAP70, RET	92	Phase 2: Adenocarcinoma, Brain Abscess, Breast Neoplasms, Carcinoma, Hepatocellular, Carcinoma, Ovarian Epithelial, Carcinoma, Renal Cell, Embolism, Endometrial Neoplasms, Esophageal Neoplasms, Germinoma, Granuloma, Head and Neck Neoplasms, Hodgkin Disease, Hypereosinophilic Syndrome, Immunoblastic Lymphadenopathy, Kidney Neoplasms, Leukemia, Leukemia, Basophilic, Acute, Leukemia, Eosinophilic, Acute, Leukemia, Erythroblastic, Acute, Leukemia, Lymphocytic, Chronic, B-Cell, Leukemia, Monocytic, Acute, Leukemia, Myeloid, Leukemia, Myeloid, Acute, Leukemia, Megakaryoblastic, Acute, Leukemia, Prolymphocytic, Leukemia, T-Cell, Leukemia, Lymphoma, Adult T-Cell, Liver Neoplasms, Lymphodenopathy, Lymphatic Diseases, Lymphoma, Lymphoma, B-Cell, Lymphoma, B-Cell, Marginal Zone, Lymphoma, Follicular, Lymphoma, Large B-Cell, Diffuse, Lymphoma, Follicular, Lymphoma, Large B-Cell, Diffuse, Lymphoma, Non- Hodgkin, Lymphoma, T-Cell, Lymphoma, T-Cell, Cutaneous, Lymphomatoid Granulomatosis, Melanoma, Multiple Myeloma, Mycoses, Mycosis Fungoides, Myelodysplastic Syndromes, Neoplasms, Neoplasms, Germ Cell and Embryonal, Neoplasms, Prestoneal Neoplasms, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Preleukemia, Prostatic Neoplasms, Prostatic Neoplasms, Castration-Resistant, Recurrence, Sarcoma, Seminoma, Sezary Syndrome, Stomach Neoplasms, Testicular Neoplasms, Thromboembolism, Waldenstrom Macroglobulinemia

The **Maximum trial phase** column reflects the maximum clinical trials phase in which the drug was studied for any pathology.

No prospective drugs were found, which would be predicted by PASS software to be active against the identified drug targets and would be predicted to have biological activity against the studied disease(s).

Table 14. Prospective drugs, predicted by PASS software to be active against the identified drug targets, though without cheminformatically predicted activity against the studied disease(s) (drug candidates predicted with the cheminformatics tool PASS) See full table \rightarrow

Name	Target names	Drug score	Target activity score
Perindopril	ITGB3, ITGA2B	88	0.29
3- (Phosphonomethyl)Pyridine- 2-Carboxylic Acid	DUSP26, DUSP22, PTPN5, EPM2A, PTPN2, PTPN13, PTPN6, PTPRC, PTPRA, CDC25C, DUSP4, CDC25A, DUSP5, PTPRH, DUSP7, PTPN12, CDC25B, DUSP14, DUSP8, PTPN21, PTPRZ1, DUSP3	86	1.18
Bortezomib	PSMC5, PSMA7, PSMC3, PSMD4, ITGB3, ITGA2B	84	0.23
1-ETHOXYCARBONYL-D- PHE-PRO-2(4- AMINOBUTYL)HYDRAZINE	STAT1, ITGB3, ITGA2B	84	0.28
Uracil	TEC, RIPK2, EPHB2, SRC, MERTK, JAK3, EPHA4, PDGFRA, EGFR, SYK, WEE1, ZAP70, TNF, HCK, PRKCD, PTK6, JAK2, LYN, CSK, RET, TYK2	83	1.24

As the result of drug search we propose the following drugs as most promising candidates for treating the pathology under study: Sorafenib, seliciclib and Perindopril. These drugs were selected for acting on the following targets: PRKCE and ITGA2B, which were predicted to be active in the molecular mechanism of the studied pathology.

The selected drugs are top ranked drug candidates from each of the four categories of drugs: (1) FDA approved drugs or used in clinical trials drugs for the studied pathology; (2) repurposing drugs used in clinical trials for other pathologies; (3) drugs, predicted by PASS software to be active against the studied pathology; (4) drugs, predicted by PASS software to be repurposed from other pathologies.

6. Conclusion

We applied the software package "Genome Enhancer" to a data set that contains *transcriptomics* data obtained from *liver* tissue. The study is done in the context of *Hepatitis C*. The data were pre-processed, statistically analyzed and differentially expressed genes were identified. Also checked was the enrichment of GO or disease categories among the studied gene sets.

We propose the following drugs as most promising candidates for treating the pathology under study:

These drugs were selected for acting on the following targets: PRKCE and ITGA2B, which were predicted to be involved in the molecular mechanism of the pathology under study.

The identified molecular mechanism of the studied pathology was predicted to be mainly based on the following key drug targets:

LPS:lbp:CD14:TLR4:MD-2:MyD88:IRAK-1{pS376}{pT387}, dsRNA:TLR3:TRIF, JKAP, PKACA and LCMT

These potential drug targets should be considered as a prospective research initiative for further drug repurposing and drug development purposes. The following drugs were predicted as, matching those drug targets: L-Leucine, Hydroxychloroquine, fostamatinib, 3-(Phosphonomethyl)Pyridine-2-Carboxylic Acid, Ritonavir, Sorafenib, seliciclib, L-Sulforaphane, N-Carbamoyl-L-Aspartate and Edotecarin. These drugs should be considered with special caution for research purposes only.

In this study, we came up with a detailed signal transduction network regulating differentially expressed genes in the studied pathology. In this network we have revealed the following top master regulators (signaling proteins and their complexes) that play a crucial role in the molecular mechanism of the studied pathology, which can be proposed as the most promising molecular targets for further drug repurposing and drug development initiatives.

- LPS:lbp:CD14:TLR4:MD-2:MyD88:IRAK-1{pS376}{pT387}
- dsRNA:TLR3:TRIF
- JKAP
- PKACA

• LCMT

Potential drug compounds which can be affecting these targets can be found in the "Finding prospective drug targets" section.

7. Methods

Databases used in the study

Transcription factor binding sites in promoters and enhancers of differentially expressed genes were analyzed using known DNA-binding motifs described in the TRANSFAC® library, release 2023.1 (geneXplain GmbH, Wolfenbüttel, Germany) (https://genexplain.com/transfac).

The master regulator search uses the TRANSPATH® database (BIOBASE), release 2023.1 (geneXplain GmbH, Wolfenbüttel, Germany) (https://genexplain.com/transpath). A comprehensive signal transduction network of human cells is built by the software on the basis of reactions annotated in TRANSPATH®.

The information about drugs corresponding to identified drug targets and clinical trials references were extracted from HumanPSD[™] database, release 2023.1 (https://genexplain.com/humanpsd).

The Ensembl database release Human104.38 (hg38) (http://www.ensembl.org) was used for gene IDs representation and Gene Ontology (GO) (http://geneontology.org) was used for functional classification of the studied gene set.

Methods for the analysis of enriched transcription factor binding sites and composite modules

Transcription factor binding sites in promoters and enhancers of differentially expressed genes were analyzed using known DNA-binding motifs. The motifs are specified using position weight matrices (PWMs) that give weights to each nucleotide in each position of the DNA binding motif for a transcription factor or a group of them.

We search for transcription factor binding sites (TFBS) that are enriched in the promoters and enhancers under study as compared to a background sequence set such as promoters of genes that were not differentially regulated under the condition of the experiment. We denote study and background sets briefly as Yes and No sets. In the current work we used a workflow considering promoter sequences of a standard length of 1100 bp (-1000 to +100). The error rate in this part of the pipeline is controlled by estimating the adjusted p-value (using the Benjamini-Hochberg procedure) in comparison to the TFBS frequency found in randomly selected regions of the human genome (adj.p-value < 0.01).

We have applied the CMA algorithm (Composite Module Analyst) for searching composite modules [7] in the promoters and enhancers of the Yes and No sets. We searched for a composite module consisting of a cluster of 10 TFs in a sliding window of 200-300 bp that statistically significantly separates sequences in the Yes and No sets (minimizing Wilcoxon p-value).

Methods for finding master regulators in networks

We searched for master regulator molecules in signal transduction pathways upstream of the identified transcription factors. The master regulator search uses a comprehensive signal transduction network of human cells. The main algorithm of the master regulator search has been described earlier [3,4]. The goal of the algorithm is to find nodes in the global signal transduction network that may potentially regulate the activity of a set of transcription factors found at the previous step of the analysis. Such nodes are considered as most promising drug

targets, since any influence on such a node may switch the transcriptional programs of hundreds of genes that are regulated by the respective TFs. In our analysis, we have run the algorithm with a maximum radius of 12 steps upstream of each TF in the input set. The error rate of this algorithm is controlled by applying it 10000 times to randomly generated sets of input transcription factors of the same set-size. Z-score and FDR value of ranks are calculated then for each potential master regulator node on the basis of such random runs (see detailed description in [9]). We control the error rate by the FDR threshold 0.05.

Methods for analysis of pharmaceutical compounds

We seek for the optimal combination of molecular targets (key elements of the regulatory network of the cell) that potentially interact with pharmaceutical compounds from a library of known drugs and biologically active chemical compounds, using information about known drugs from HumanPSD[™] and predicting potential drugs using PASS program.

Method for analysis of known pharmaceutical compounds

We selected compounds from HumanPSD[™] database that have at least one target. Next, we sort compounds using "Drug rank" that is the sum of the following ranks:

- 1. ranking by "Target activity score" (*T*-score_{PSD}),
- 2. ranking by "Disease activity score" (D-score_{PSD}),
- 3. ranking by "Clinical validity score".

"Target activity score" (*T*-score_{PSD}) is calculated as follows:

$$T\text{-}score_{PSD} = -\frac{|T|}{|T| + w(|AT| - |T|))} \sum_{t \in T} \log_{10} \left(\frac{rank(t)}{1 + maxRank(T)} \right),$$

where T is set of all targets related to the compound intersected with input list, |T| is number of elements in T, AT and |AT| are set set of all targets related to the compound and number of elements in it, w is weight multiplier, rank(t) is rank of given target, maxRank(T) equals max(rank(t)) for all targets t in T.

We use following formula to calculate "Disease activity score" (*D*-score_{PSD}):

$$D\text{-}score_{PSD} = \begin{cases} \sum_{d \in D} \sum_{p \in P} phase(d, p) \\ 0, D = \emptyset \end{cases},$$

where D is the set of selected diseases, and if D is empty set, D-score_{PSD}=0. P is a set of all known phases for each disease, phase(p,d) equals to the phase number if there are known clinical trials for the selected disease on this phase and zero otherwise.

The clinical validity score reflects the number of the highest clinical trials phase (from 1 to 4) on which the drug was ever tested for any pathology.

Method for prediction of pharmaceutical compounds

In this study, the focus was put on compounds with high pharmacological efficiency and low toxicity. For this purpose, comprehensive library of chemical compounds and drugs was subjected to a SAR/QSAR analysis. This library contains 13040 compounds along with their pre-calculated potential pharmacological activities of those substances, their possible side and toxic effects, as well as the possible mechanisms of action. All biological activities are expressed as probability values for a substance to exert this activity (Pa).

We selected compounds that satisfied the following conditions:

- 1. Toxicity below a chosen toxicity threshold (defines as *Pa*, probability to be active as toxic substance).
- 2. For all predicted pharmacological effects that correspond to a set of user selected disease(s) *Pa* is greater than a chosen effect threshold.
- 3. There are at least 2 targets (corresponding to the predicted activity-mechanisms) with predicted *Pa* greater than a chosen target threshold.

The maximum *Pa* value for all toxicities corresponding to the given compound is selected as the "Toxicity score". The maximum *Pa* value for all activities corresponding to the selected diseases for the given compound is used as the "Disease activity score". "Target activity score" (T-score) is calculated as follows:

$$T\text{-}score(s) = \frac{|T|}{|T| + w(|AT| - |T|))} \sum_{m \in M(s)} \left(pa(m) \sum_{g \in G(m)} IAP(g)optWeight(g) \right),$$

where M(s) is the set of activity-mechanisms for the given structure (which passed the chosen threshold for activity-mechanisms Pa); G(m) is the set of targets (converted to genes) that corresponds to the given activity-mechanism (m) for the given compound; pa(m) is the probability to be active of the activity-mechanism (m), IAP(g) is the invariant accuracy of prediction for gene from G(m); optWeight(g) is the additional weight multiplier for gene. T is set of all targets related to the compound intersected with input list, |T| is number of elements in T, AT and |AT| are set set of all targets related to the compound and number of elements in it, w is weight multiplier.

"Druggability score" (D-score) is calculated as follows:

$$D\text{-}score(g) = IAP(g) \sum_{s \in S(g)} \sum_{m \in M(s,g)} pa(m),$$

where S(g) is the set of structures for which target list contains given target, M(s,g) is the set of activity-mechanisms (for the given structure) that corresponds to the given gene, pa(m) is the probability to be active of the activity-mechanism (m), IAP(g) is the invariant accuracy of prediction for the given gene.

8. References

- 1. Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways. *BMC Bioinformatics.* **2006**;7(S2), S13. doi:10.1186/1471-2105-7-s2-s13
- Stegmaier P, Voss N, Meier T, Kel A, Wingender E, Borlak J. Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer. *PLoS ONE.* 2011;6(3):e17738. doi:10.1371/journal.pone.0017738
- 3. Koschmann J, Bhar A, Stegmaier P, Kel A, Wingender E. "Upstream Analysis": An Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray Data. *Microarrays.* **2015**;4(2):270-286. doi:10.3390/microarrays4020270.
- Kel A, Stegmaier P, Valeev T, Koschmann J, Poroikov V, Kel-Margoulis OV, and Wingender E. Multi-omics "upstream analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. *EuPA Open Proteom.* 2016;13:1-13. doi:10.1016/j.euprot.2016.09.002
- 5. Michael H, Hogan J, Kel A et al. Building a knowledge base for systems pathology. *Brief Bioinformatics.* **2008**;9(6):518-531. doi:10.1093/bib/bbn038
- Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. *Nucleic Acids Res.* 2006;34(90001):D108-D110. doi:10.1093/nar/gkj143
- Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. *Nucleic Acids Res.* 2003;31(13):3576-3579. doi:10.1093/nar/gkg585

- 8. Waleev T, Shtokalo D, Konovalova T, Voss N, Cheremushkin E, Stegmaier P, Kel-Margoulis O, Wingender E, Kel A. Composite Module Analyst: identification of transcription factor binding site combinations using genetic algorithm. *Nucleic Acids Res.* **2006**;34(Web Server issue):W541-5.
- Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E. TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. *Nucleic Acids Res.* 2006;34(90001):D546-D551. doi:10.1093/nar/gkj107
- Boyarskikh U, Pintus S, Mandrik N, Stelmashenko D, Kiselev I, Evshin I, Sharipov R, Stegmaier P, Kolpakov F, Filipenko M, Kel A. Computational master-regulator search reveals mTOR and PI3K pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic action of p53 activator Nutlin-3. *BMC Med Genomics.* **2018**;11(1):12. doi:10.1186/1471-2105-7-s2-s13
- Filimonov D, Poroikov V. Probabilistic Approaches in Activity Prediction. Varnek A, Tropsha A. Cheminformatics Approaches to Virtual Screening. Cambridge (UK): RSC Publishing. 2008;:182-216.
- 2. Filimonov DA, Poroikov VV. Prognosis of specters of biological activity of organic molecules. *Russian chemical journal.* **2006**;50(2):66-75 (russ)
- 3. Filimonov D, Poroikov V, Borodina Y, Gloriozova T. Chemical Similarity Assessment Through Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descriptors. *ChemInform.* **1999**;39(4):666-670. doi:10.1002/chin.199940210

Thank you for using the Genome Enhancer!

In case of any questions please contact us at support@genexplain.com

Supplementary material

- 1. Supplementary table 1 Detailed report. Composite modules and master regulators (high expressed genes in Experiment).
- 2. Supplementary table 2 Detailed report. Composite modules and master regulators (low expressed genes in Experiment).
- 3. Supplementary table 3 Detailed report. Pharmaceutical compounds and drug targets.

Disclaimer

Decisions regarding care and treatment of patients should be fully made by attending doctors. The predicted chemical compounds listed in the report are given only for doctor's consideration and they cannot be treated as prescribed medication. It is the physician's responsibility to independently decide whether any, none or all of the predicted compounds can be used solely or in combination for patient treatment purposes, taking into account all applicable information regarding FDA prescribing recommendations for any therapeutic and the patient's condition, including, but not limited to, the patient's and family's medical history, physical examinations, information from various diagnostic tests, and patient preferences in accordance with the current standard of care. Whether or not a particular patient will benefit from a selected therapy is based on many factors and can vary significantly.

The compounds predicted to be active against the identified drug targets in the report are not guaranteed to be active against any particular patient's condition. GeneXplain GmbH does not give any assurances or guarantees regarding the treatment information and conclusions given in the report. There is no guarantee that any third party will provide a refund for any of the

treatment decisions made based on these results. None of the listed compounds was checked by Genome Enhancer for adverse side-effects or even toxic effects.

The analysis report contains information about chemical drug compounds, clinical trials and disease biomarkers retrieved from the HumanPSD[™] database of gene-disease assignments maintained and exclusively distributed worldwide by geneXplain GmbH. The information contained in this database is collected from scientific literature and public clinical trials resources. It is updated to the best of geneXplain's knowledge however we do not guarantee completeness and reliability of this information leaving the final checkup and consideration of the predicted therapies to the medical doctor.

The scientific analysis underlying the Genome Enhancer report employs a complex analysis pipeline which uses geneXplain's proprietary Upstream Analysis approach, integrated with TRANSFAC® and TRANSPATH® databases maintained and exclusively distributed worldwide by geneXplain GmbH. The pipeline and the databases are updated to the best of geneXplain's knowledge and belief, however, geneXplain GmbH shall not give a warranty as to the characteristics or to the content and any of the results produced by Genome Enhancer. Moreover, any warranty concerning the completeness, up-to-dateness, correctness and usability of Genome Enhancer information and results produced by it, shall be excluded.

The results produced by Genome Enhancer, including the analysis report, severely depend on the quality of input data used for the analysis. It is the responsibility of Genome Enhancer users to check the input data quality and parameters used for running the Genome Enhancer pipeline.

Note that the text given in the report is not unique and can be fully or partially repeated in other Genome Enhancer analysis reports, including reports of other users. This should be considered when publishing any results or excerpts from the report. This restriction refers only to the general description of analysis methods used for generating the report. All data and graphics referring to the concrete set of input data, including lists of mutated genes, differentially expressed genes/proteins/metabolites, functional classifications, identified transcription factors and master regulators, constructed molecular networks, lists of chemical compounds and reconstructed model of molecular mechanisms of the studied pathology are unique in respect to the used input data set and Genome Enhancer pipeline parameters used for the current run.