PPP1R1B and KLK2 are promising druggable targets for treating Hypertension that control activity of NEUROD1, DBP and SIN3A transcription factor on of highly methylated genes in blood tissue

Demo User geneXplain GmbH info@genexplain.com Data received on 08/04/2022 ; Run on 12/04/2022 ; Report generated on 13/04/2022

Genome Enhancer release 3.0 (TRANSFAC®, TRANSPATH® and HumanPSD[™] release 2022.1)

Abstract

In the present study we applied the software package "Genome Enhancer" to a data set that contains *epigenomics* data obtained from *blood* tissue. The study is done in the context of *Hypertension*. The goal of this pipeline is to identify potential drug targets in the molecular network that governs the studied pathological process. In the first step of analysis pipeline discovers transcription factors (TFs) that regulate genes activities in the pathological state. The activities of these TFs are controlled by so-called master regulators, which are identified in the second step of analysis. After a subsequent druggability checkup, the most promising master regulators are chosen as potential drug targets for the analyzed pathology. At the end the pipeline comes up with (a) a list of known drugs and (b) investigational active chemical compounds with the potential to interact with selected drug targets.

From the data set analyzed in this study, we found the following TFs to be potentially involved in the regulation of the highly methylated genes: NEUROD1, DBP and SIN3A. The subsequent network analysis suggested

- CARD11
- DARPP32
- kallikrein-2

as the most promising molecular targets for further research, drug development and drug repurposing initiatives on the basis of identified molecular mechanism of the studied pathology. Having checked the actual druggability potential of the full list of identified targets, both, via information available in medical literature and via cheminformatics analysis of drug compounds, we have identified the following drugs as the most promising treatment candidates for the studied pathology: Imatinib, Dasatinib, Cyclothiazide and Naringenin.

1. Introduction

Recording "-omics" data to measure gene activities, protein expression or metabolic events is becoming a standard approach to characterize the pathological state of an affected organism or tissue. Increasingly, several of these methods are applied in a combined approach leading to large "multiomics" datasets. Still the challenge remains how to reveal the underlying molecular mechanisms that render a given pathological state different from the norm. The disease-causing mechanism can be described by a re-wiring of the cellular regulatory network, for instance as a result of a genetic or epigenetic alterations influencing the activity of relevant genes. Reconstruction of the disease-specific regulatory networks can help identify potential master regulators of the respective pathological process. Knowledge about these master regulators can point to ways how to block a pathological regulatory cascade. Suppression of certain molecular targets as components of these cascades may stop the pathological process and cure the disease.

Conventional approaches of statistical "-omics" data analysis provide only very limited information about the causes of the observed phenomena and therefore contribute little to the understanding of the pathological molecular mechanism. In contrast, the "upstream analysis" method [1-4] applied here has been deviced to provide a casual interpretation of the data obtained for a pathology state. This approach comprises two major steps: (1) analysing promoters and enhancers of highly methylated genes for the transcription factors (TFs) involved in their regulation and, thus, important for the process under study; (2) re-constructing the signaling pathways that activate these TFs and identifying master regulators at the top of such pathways. For the first step, the database TRANSFAC® [6] is employed together with the TF binding site identification

algorithms Match [7] and CMA [8]. The second step involves the signal transduction database TRANSPATH® [9] and special graph search algorithms [10] implemented in the software "Genome Enhancer".

The "upstream analysis" approach has now been extended by a third step that reveals known drugs suitable to inhibit (or activate) the identified molecular targets in the context of the disease under study. This step is performed by using information from HumanPSD[™] database [5]. In addition, some known drugs and investigational active chemical compounds are subsequently predicted as potential ligands for the revealed molecular targets. They are predicted using a pre-computed database of spectra of biological activities of chemical compounds of a library of 2245 known drugs and investigational chemical compounds from HumanPSD[™] database. The spectra of biological activities for these compounds are computed using the program PASS on the basis of a (Q)SAR approach [11-13]. These predictions can be used for the research purposes - for further drug development and drug repurposing initiatives.

2. Data

For this study the following experimental data was used:

Table 1. Experimental datasets used in the study

File name	Data type
df_hp	Epigenomics
df_norm	Epigenomics

Hypertension	Control
LCL_0001	LCL_0007
■ df_hp = LCL 0005	➡ df_norm
df_hp	df_norm
tot_0016 ₩df_hp	df_norm
ELCL_0019 ₩df_hp	LCL_0017
ELCL_0021 #df_hp	ELCL_0018
LCL_0023	LCL_0022
ELCL_0028	LCL_0029
LCL_0032	
ELCL_0037	LCL_0066
LCL_0041	LCL_0074
LCL_0044	LCL_0076
•• df_hp = LCL_0048	E LCL_0077
■ df_hp = LCL_0050	← df_norm ⊑ LCL_0083
■ df_hp ■ LCL 0052	"₩ df_norm ⊑ LCL 0087
# df_hp	df_norm
# df_hp	df_norm
ELCL_0055 #df_hp	LCL_0091
ELCL_0057	ELCL_0095
LCL_0060	LCL_0003
E_LCL_0063	LCL_0097
ELCL_0072	LCL_0102
LCL_0082	LCL_0107
LCL_0084	
LCL_0085	
	LCL_0128
	ELCL_0129
■ df_hp = LCL_0093	- ₩ df_norm
■ df_hp = ICI 0101	[™] # df_norm ⊏ ICL 0136
# df_hp	# df_norm

ELCL_0105 LCL_0111 LCL_0112 LCL_0113 LCL_0120 LCL_0125 LCL_0131 LCL_0141 LCL_0162 ELCL_0171 LCL_0175 LCL_0177 LCL_0189 ELCL_0190 LCL_0192 ELCL_0193 LCL_0194 ELCL_0198 ELCL_0199 LCL_0200 LCL_0205 LCL_0211 ELCL_0213 LCL_0214 LCL_0217 ELCL_0233 ELCL_0235 ELCL_0236 LCL_0237 ELCL_0241 ELCL_0246 ELCL_0255 LCL_0256 LCL_0257 ELCL_0262 ELCL_0265 LCL_0266 LCL_0272 ELCL_0280 ELCL_0285 ELCL_0298 LCL_0299 LCL_0310 ELCL_0314 LCL_0322

E,	LGL_0144 df_norm
E,	LCL_0145
E.	LCL_0147
	df_norm LCL 0148
- #	df_norm
E#	df_norm
E _#	LCL_0155 df_norm
E,	LCL_0158 df_norm
E,	LCL_0159
E,	LCL_0135
Е.	ar_norm LCL_0164
- #	df_norm LCL 0165
-#	df_norm
E _#	df_norm
E,	LCL_0168 df_norm
E,	LCL_0174 df_norm
E,	LCL_0176
E.,	LCL_0179
Е.	dt_norm LCL_0183
-*	df_norm ICI 0188
F#	df_norm
E,	df_norm
E _#	LCL_0197 df_norm
E,	LCL_0204 df_norm
E,	LCL_0209
E,	LCL_0219
Е.,	LCL_0220
Е.	LCL_0221
F	df_norm LCL_0223
-*	df_norm ICI 0224
5	df_norm
F#	df_norm
E,	LCL_0234 df_norm
E _#	LCL_0244 df_norm
E,	LCL_0245 df norm
E,	LCL_0253
E,	LCL_0258
E.	LCL_0260
F	df_norm LCL_0264
-#	df_norm ICI 0274
- #	df_norm
E#	df_norm
E#	df_norm
E#	LCL_0291 df_norm
E,	LCL_0293 df_norm
E,	LCL_0294 df norm
E,	LCL_0295
E,	LCL_0301
fe.	LCL_0303
-# F	df_norm LCL 0306
-#	df_norm

ELCL_0324 LCL_0327 ELCL_0338 ELCL_0350 LCL_0351 LCL_0352 ELCL_0355 ELCL_0356 LCL_0363 LCL_0366 LCL_0369 ELCL_0372 ELCL_0374 LCL_0392 ELCL_0393 ELCL_0398 ELCL_0399 ELCL_0401 LCL_0403 ELCL_0406 ELCL_0408 ELCL_0410 LCL_0417 LCL_0420 ELCL_0430 ELCL_0434 LCL_0441 ELCL_0444 LCL_0445 ELCL_0447 ELCL_0460 LCL_0468 LCL_0473 ELCL_0478 ELCL_0483 ELCL_0484 LCL_0486 ELCL_0507 ELCL_0509 ELCL_0511 LCL_0512 ELCL_0514 ELCL_0515 ELCL_0518 LCL_0519

E,	LCL_0307
_	dt_norm LCL 0315
H	df_norm
E _#	df_norm
E,	LCL_0318 df norm
Е.	LCL_0319
-	df_norm LCL 0325
-#	df_norm
E _#	df_norm
E,	LCL_0329 df_norm
E,	LCL_0336
Е.,	LCL_0337
•	df_norm LCL 0341
- #	df_norm
E _#	df_norm
E _#	LCL_0361 df_norm
E,	LCL_0365
Е.	LCL_0375
-	df_norm LCL 0388
Ħ	df_norm
E _#	df_norm
E _#	LCL_0427 df_norm
E,	LCL_0428
E.,	LCL_0429
E.	LCL_0437
-*	df_norm ICI 0442
F#	df_norm
Ę	df_norm
E,	LCL_0476 df_norm
E,	LCL_0496
Е.,	LCL_0498
	df_norm LCL_0499
-#	df_norm
F#	df_norm
E _#	df_norm
E _#	LCL_0504 df_norm
E,	LCL_0505
E.	LCL_0506
f	LCL_0531
-#	df_norm
- #	df_norm
E,	df_norm
E,	LCL_0568 df_norm
E _#	LCL_0578
Е.	LCL_0585
۴ F	df_norm LCL_0586
*#	df_norm
5#	df_norm
E#	LCL_0599 df_norm
E _#	LCL_0605 df_norm
E _#	LCL_0607
E.	LCL_0616
f	df_norm LCL_0618
-#	df_norm

1

ELCL_0522 ELCL_0528 ELCL_0532 LCL_0534 LCL_0537 ELCL_0547 ELCL_0552 LCL_0554 LCL_0542 ELCL_0569 ELCL_0570 ELCL_0571 LCL_0581 LCL_0584 ELCL_0590 ELCL_0597 LCL_0604 LCL_0610 ELCL_0611 LCL_0612 ELCL_0620 LCL_0630 LCL_0631 ELCL_0637 ELCL_0641 LCL_0642 ELCL_0659 ELCL_0660 ELCL_0665 ELCL_0673 LCL_0677 ELCL_0678 ELCL_0687 ELCL_0691 LCL_0694 ELCL_0697 ELCL_0701 ELCL_0702 ELCL_0707 ELCL_0711 LCL_0723 ELCL_0726 ELCL_0727 LCL_0732 LCL_0733

E,	LCL_0625
E.	LCL_0626
- #	df_norm ICI 0627
F #	df_norm
E,	df_norm
E#	LCL_0634 df_norm
E _#	LCL_0638 df_norm
E,	LCL_0640
E,	LCL_0643
Е.	LCL_0644
F.	df_norm LCL_0645
-#	df_norm LCL 0655
-#	df_norm
F#	df_norm
E _#	df_norm
E#	LCL_0676 df_norm
E,	LCL_0690 df_norm
E,	LCL_0692 df norm
E,	 LCL_0693
E,	LCL_0700
Е.	LCL_0705
F.	df_norm LCL_0709
-# =	df_norm LCL 0717
5# -	df_norm
F#	df_norm
E#	df_norm
E	LCL_0724 df_norm
E#	LCL_0728 df_norm
E,	LCL_0731 df_norm
E,	LCL_0734 df.norm
E,	_ LCL_0738
E,	LCL_0739
	LCL_0745
Ē	df_norm LCL_0749
-# F	df_norm LCL 0754
-#	df_norm
F#	df_norm
E	df_norm
E,	LCL_0762 df_norm
E#	LCL_0764 df_norm
E#	LCL_0765 df_norm
E,	LCL_0769 df_norm
E _#	LCL_0780
E,	LCL_0784
E.	LCL_0788
f.	LCL_0789
=#	df_norm LCL_0793
•# E	df_norm LCL 0797
- #	df_norm
F#	df_norm

ELCL_0737 ELCL_0741 LCL_0742 ELCL_0743 LCL_0755 ELCL_0773 LCL_0774 LCL_0775 ELCL_0778 ELCL_0783 ELCL_0785 LCL_0795 LCL_0796 ELCL_0800 ELCL_0808 ELCL_0810 ELCL_0814 ELCL_0817 ELCL_0836 ELCL_0837 LCL_0866 LCL_0869 ELCL_0871 ELCL_0873 LCL_0877 ELCL_0893 ELCL_0903 ELCL_0905 ELCL_0907 LCL_0911 ELCL_0912 ELCL_0916 ELCL_0923 ELCL_0935 ELCL_0937 ELCL_0942 ELCL_0950 ELCL_0958 ELCL_0959 ELCL_0960 ELCL_0961 ELCL_0963 ELCL_0967 ELCL_0975 ELCL_0978

Es.	LCL_0805
H	df_norm
E,	LCL_0809
F	LCL 0811
"#	df_norm
E,	LCL_0813
F =	LCL 0821
H	df_norm
E,	LCL_0823
F =	LCL 0824
H	df_norm
E,	LCL_0826
E=	LCL_0827
"H	df_norm
E,	LCL_0828 df_norm
Е.	LCL_0831
	df_norm
E,	df_norm
E.,	LCL_0835
_	df_norm
F#	df_norm
E.,	LCL_0847
	at_norm
F#	df_norm
E,	LCL_0853
	ICI 0854
F#	df_norm
E,	LCL_0858
F .	LCL 0863
*	df_norm
E,	LCL_0865 df norm
E.	LCL_0870
"H	df_norm
E,	LCL_0874 df_norm
E.,	LCL_0879
_"	
F#	df_norm
E,	LCL_0883
F .	LCL 0884
Ħ	df_norm
E,	LCL_0887
E=	LCL_0888
"H	df_norm
E,	LCL_0889 df_norm
Е.	LCL_0890
	df_norm
E.	df_norm
Е,	LCL_0898
_	LCL 0904
H	df_norm
E,	LCL_0909
F	LCL_0914
Ħ	df_norm
E,	LCL_0917 df_norm
E	LCL_0920
	df_norm
E,	df_norm
E.	LCL_0922
-	df_norm
F#	df_norm
E,	LCL_0928
_	LCL 0943
Ħ	df_norm
E,	LCL_0954 df norm
F	LCL_0964
-#	df_norm

E.,	LCL_0980
•	df_hp LCL_0984
Ē	df_hp LCL 0987
-#	df_hp
F#	df_hp
E,	df_hp
E,	LCL_1002 df_hp
E,	LCL_1006 df_hp
E,	LCL_1007
Е.,	LCL_1025
	at_np LCL_1027
-# F	df_hp LCL 1028
-#	df_hp
F#	df_hp
E,	LCL_1041 df_hp
E,	LCL_1048 df_hp
E,	LCL_1055 df hp
E,	LCL_1066
Е.	LCL_1069
F	df_hp LCL_1078
-#	df_hp ICL 1086
F#	df_hp
E,	df_hp
E,	LCL_1094 df_hp
E,	LCL_1096 df_hp
E,	LCL_1098 dfhp
E.	LCL_1100
E.	LCL_1102
	at_np LCL_1104
THE	df_hp LCL 1105
-#	df_hp
F#	df_hp
E,	df_hp
E,	LCL_1115 df_hp
E,	LCL_1119 df_hp
E,	LCL_1120
Е.,	LCL_1121
	dt_hp LCL_1123
-#	df_hp LCL 1124
Ħ	df_hp
F #	df_hp
E _#	df_hp
E,	LCL_1133 df_hp
E,	LCL_1134 df_hp
E,	LCL_1135
E,	LCL_1137
E.	LCL_1142
f E	ar_hp LCL_1143
=#	df_hp LCL 1145
Ħ	df_hp
F#	df_hp

E,	LCL_0968 df_norm
E,	LCL_0969
E,	LCL_0982
E.	LCL_0990
E.,	LCL_0994
E.	LCL_1005
E.	df_norm LCL_1021
Е.	df_norm LCL_1032
F	df_norm LCL_1034
Ē	df_norm LCL 1035
-# =	df_norm LCL 1039
*	df_norm
Ħ	df_norm
F#	df_norm
F.	df_norm
E,	df_norm
E,	LCL_1079 df_norm
E,	LCL_1087 df_norm
E,	LCL_1088 df_norm
E,	LCL_1097 df_norm
E,	LCL_1101 df_norm
E,	LCL_1122 df_norm
E,	LCL_1144 df_norm
E#	LCL_1162 df_norm
E,	LCL_1176 df_norm
E,	LCL_1185 df_norm
E.,	LCL_1193 df_norm
E,	LCL_1194
E,	LCL_1202
	_

Figure 1. Annotation diagram of experimental data used in this study. With the colored boxes we show those sub-categories of the data that are compared in our analysis.

3. Results

We have compared the following conditions: Hypertension versus Control.

3.1. Identification of target genes

In the first step of the analysis **target genes** were identified from the uploaded experimental data. The most highly methylated genes were used as target genes.

Table 2. Top ten highly methylated genes in Hypertension vs. Control. See full table \rightarrow

ID	Gene description	Gene symbol	Gene schematic representation	Number of methylation sites	Methylation sites in exons	Methylation sites in 5' region
ENSG00000204956	protocadherin gamma subfamily A, 1	PCDHGA1		41	5	0
ENSG00000250349	novel proline rich Gla (G- carboxyglutamic acid) 1 (PRRG1) and tetraspanin 7 (TSPAN7) protein	ENSG00000250349		38	2	2
ENSG0000081853	protocadherin gamma subfamily A, 2	PCDHGA2		37	5	0
ENSG00000204970	protocadherin alpha 1	PCDHA1		34	0	0
ENSG00000254245	protocadherin gamma subfamily A, 3	PCDHGA3		34	5	0
ENSG00000204969	protocadherin alpha 2	PCDHA2		33	3	0
ENSG00000254221	protocadherin gamma subfamily B, 1	PCDHGB1		31	5	0
ENSG00000255408	protocadherin alpha 3	PCDHA3		30	2	0
ENSG00000204967	protocadherin alpha 4	PCDHA4		28	1	0
ENSG00000204965	protocadherin alpha 5	PCDHA5		27	3	1

3.2. Functional classification of genes

A functional analysis of highly methylated genes was done by mapping the genes to several known ontologies, such as Gene Ontology (GO), disease ontology (based on HumanPSD[™] database) and the ontology of signal transduction and metabolic pathways from the TRANSPATH® database. Statistical significance was computed using a binomial test. Figures 2-4 show the most significant categories.

Highly methylated genes in Hypertension vs. Control:

5196 top methylated genes were taken for the mapping.

GO (biological process)

				biological_proce	ss Gene Ontology	treemap				
regulation of nervou system developmen	regulation of nt neurogenesis	regulation of neuron differentiation	behavior	learning cognition or memory	pattern specification process	anterior/posterio pattern specification	r homophilic cell adhesion via plasma membrane adhesion molecules	cell-cell adhesion via plasma-membrane adhesion molecules	generation of neurons	neurogenesis
regulation r of cell c development p development	egulation positiv f neuron regulatio rojection neurogen velopment positive negativ regulation regulatio	re negative regulation of nesis neurogenesis re negative n of regulation	locomotory adult behavior behavior	feeding adult behavior behavior	regionalization pattern specifica cell morphogenesis	dorsal/ventral	homophilic cell a membrane adh cell fate commitmen	dhesion via plasma esion molecules t == cell	generation o	of neurons
positive regulation of nervous system development positive regulation of	of cell nervous sy ferentiation developm negative positive regulation regulation of cell of cell pretopment development	Astem of neuron neint differentiation of cel morphogenesis involved in differentiation ent registrion of cel morphogenesis involved in differentiation registrion registrion registrion registrion	regulation of RNA biosynthetic process	ulation of iscription, -templated of RNA metabolic process	cell morphogenesis involved in neuron	differentiation	euron fate commitme	differentiation ^d cellu developi	ievelopmental organis process lar mental	sm development nulticellular
dev regulatic process trans-synaptic signaling	reference chemical synaptic transmission	synaptic signaling	regulation of nucleic acid-templated transcription regulation of RNA embryonic morphogenesis	regulation of ucleobase-containing metabolic process metabolic process defeat system mothogeneds mothogeneds	in neuron differ	neuron development	ell fate commitm anatomical structu development natomical struct	re cell fate specifi	ication system	sm development n development
anterograde trans-synaptic signaling		ing synaptic transmission, glutamatergic	embryonic organ morphogenesis	inner ear morphogenesis looping	cell develo	pment velopment	development neuron differentiation	cell fate spec	iffication system ess brain developmen	t development head development
cell part morphogenesis	neuron projection morphogenesis	cellular component morphogenesis	embryonic m synapse organization	embryonic orphogenesis morphogenesis synapse assembly	nervous system de	d evelopment ar adhesion	neuron lifferentiation natomical structure morphogenesis	developmental proc central nervous system developme central nervou	ent brain developmen transcription by RNA polymerase	head development forebrain development
cell projection morphogenesis	plasma membrane bounded cell projection morphogenesis t morphoge	axonogenesis	cell junction organization synapse ol	cell junction assembly ganization	adhesion cell-ce	ll adhesion Ihesion	natomical structure morphogenesis	multicellular organismal proces multicellular organismal proces	regulation organisr	forebrain II development of multicellular nal process

Figure 2. Enriched GO (biological process) of highly methylated genes in Hypertension vs. Control. Full classification \rightarrow

TRANSPATH® Pathways (2022.1)

HumanPSD(TM) disease (2022.1)

Neoplasms by Histologic Type Neoplasms, Germ Cell and Embryonal

- 📕 Neoplasms, Nerve Tissue 🔳 Neuroectodermal Tumors 🔳 Mental Disorders
- Genetic Diseases, X-Linked
- Behavior and Behavior Mechanisms
- 🔳 Intellectual Disability 🔳 Mental Retardation, X-Linked 🔳 Schizophrenia
- Schizophrenia Spectrum and Other Psychotic Disorders

Figure 4. Enriched HumanPSD(TM) disease (2022.1) of highly methylated genes in Hypertension vs. Control. The size of the bars correspond to the number of biomarkers of the given disease found among the input set.

Full classification \rightarrow

The result of overall Gene Ontology (GO) analysis of the highly methylated genes of the studied pathology can be summarized by the following diagram, revealing the most significant functional categories overrepresented among the observed (highly methylated genes):

Highly methylated genes in Hypertension vs. Control hits

-- Highly methylated genes in Hypertension vs. Control -log10(P-value)

3.3. Analysis of enriched transcription factor binding sites and composite modules

In the next step a search for transcription factors binding sites (TFBS) was performed in the regulatory regions of the **target genes** by using the TF binding motif library of the TRANSFAC® database. We searched for so called **composite modules** that act as potential condition-specific **enhancers** of the **target genes** in their upstream regulatory regions (-1000 bp upstream of transcription start site (TSS)) and identify transcription factors regulating activity of the genes through such **enhancers**.

Classically, **enhancers** are defined as regions in the genome that increase transcription of one or several genes when inserted in either orientation at various distances upstream or downstream of the gene [8]. Enhancers typically have a length of several hundreds of nucleotides and are bound by multiple transcription factors in a cooperative manner [9].

In the current work we use the Epigenomics data from the track(s) "Methylation track" to predict positions of potential **enhancers** regulating the highly methylated genes revealed by comparative epigenomics analysis. We took genomic regions -550bp upstream and 550bp downstream from the middle point of each interval of the track and check if these regions are located inside the 5kb flanking areas of the highly methylated genes (or inside the body of the genes). In such cases, these genomic regions are used for the search for potential condition-specific enhancers. In all other cases when the differentially expressed genes did not contain epigenomic peaks in their body or in the 5kb flanking regions we used the upstream regulatory regions of these genes (-1000bp upstream and 100bp downstream of TSS) for the search for condition-specific enhancers.

We applied the Composite Module Analyst (CMA) [8] method to detect such potential enhancers, as targets of multiple TFs bound in a cooperative manner to the regulatory regions of the genes of interest. CMA applies a genetic algorithm to construct

a generalized model of the enhancers by specifying combinations of TF motifs (from TRANSFAC®) whose sites are most frequently clustered together in the regulatory regions of the studied genes. CMA identifies the transcription factors that through their cooperation provide a synergistic effect and thus have a great influence on the gene regulation process.

Enhancer model potentially involved in regulation of target genes (highly methylated genes in Hypertension vs. Control).

To build the most specific composite modules we choose top methylated genes as the input of CMA algorithm.

The model consists of 2 module(s). Below, for each module the following information is shown:

- PWMs producing matches,
- number of individual matches for each PWM,
- score of the best match.

Model score (-p*log10(pval)): 55.16 Wilcoxon p-value (pval): 1.18e-103 Penalty (p): 0.536 Average yes-set score: 10.89 Average no-set score: 9.58 AUC: 0.70 Separation point: 10.49 False-positive: 28.44% False-negative: 41.48% The AUC of the model achieves value significantly higher than expected for a random set of regulatory regions Z-score = 9.57

Table 3.	List of to	p ten	highly	methylated	genes in	Hypertension	ı vs.	Control	with	identified	enhancers	n the	ir regulatory	regions.	СМА
score - t	the score o	of the	CMA m	odel of the	enhancer	identified in th	he re	egulatory	regio	on.					
See ful	l table –	→													

Ensembl IDs	Gene symbol	Gene description	CMA score	Factor names
ENSG00000167281	RBFOX3	RNA binding fox-1 homolog 3	16.95	SIN3A(h), GCMa(h), SNAI1(h), NeuroD1(h), DBP(h), NF- 1C(h), NF-kappaB-p65(h)
ENSG00000162009	SSTR5	somatostatin receptor 5	16.77	NeuroD1(h), POU5F1(h), NF-kappaB-p65(h), SNAI1(h), SIN3A(h), DBP(h), GCMa(h)
ENSG00000169710	FASN	fatty acid synthase	16.66	NF-kappaB-p65(h), NeuroD1(h), DBP(h), GCMa(h), SNAI1(h), SIN3A(h), NF-1C(h)
ENSG00000110448	CD5	CD5 molecule	16.66	SNAI1(h), NeuroD1(h), NF-kappaB-p65(h), POU5F1(h), SIN3A(h), GCMa(h), DBP(h)
ENSG00000204525	HLA-C	major histocompatibility complex, class I, C	16.41	SIN3A(h), DBP(h), NF-1C(h), NF-kappaB-p65(h), GCMa(h), POU5F1(h), SNAI1(h)
ENSG00000188511	C22orf34	chromosome 22 putative open reading frame 34	16.34	GCMa(h), NF-1C(h), SIN3A(h), DBP(h), POU5F1(h), SNAI1(h), NF-kappaB-p65(h)
ENSG00000231312	MAP4K3- DT	MAP4K3 divergent transcript	16.26	GCMa(h), NF-kappaB-p65(h), DBP(h), SIN3A(h), NF- 1C(h), NeuroD1(h), SNAI1(h)
ENSG00000169856	ONECUT1	one cut homeobox 1	16.14	DBP(h), SIN3A(h), NF-1C(h), GCMa(h), POU5F1(h), NF- kappaB-p65(h), NeuroD1(h)
ENSG00000198286	CARD11	caspase recruitment domain family member 11	15.98	NF-kappaB-p65(h), SNAI1(h), NeuroD1(h), POU5F1(h), SIN3A(h), DBP(h), NF-1C(h)
ENSG00000135253	КСР	kielin cysteine rich BMP regulator	15.97	NF-kappaB-p65(h), SNAI1(h), NeuroD1(h), POU5F1(h), SIN3A(h), DBP(h), GCMa(h)

On the basis of the enhancer models we identified transcription factors potentially regulating the *target genes* of our interest. We found 8 transcription factors controlling expression of highly methylated genes in Hypertension vs. Control (see Table 4).

Table 4. Transcription factors of the predicted enhancer model potentially regulating the highly methylated genes (highly methylated genes in Hypertension vs. Control). **Yes-No ratio** is the ratio between frequencies of the sites in Yes sequences versus No sequences. It describes the level of the enrichment of binding sites for the indicated TF in the regulatory target regions. **Regulatory score** is the measure of involvement of the given TF in the controlling of expression of genes that encode master regulators presented below (through positive feedback loops). **See full table** \rightarrow

ID	Gene symbol	Gene description	Regulatory score	Yes-No ratio
MO000028384	NEUROD1	neuronal differentiation 1	1.55	1.45
MO000028669	DBP	D-box binding PAR bZIP transcription factor	1.55	1.15
MO000030983	SIN3A	SIN3 transcription regulator family member A	1.16	1.19
MO000079319	RELA	RELA proto-oncogene, NF-kB subunit	1.14	1.68
MO000056618	POU5F1	POU class 5 homeobox 1	1.05	4.68
MO000044348	SNAI1	snail family transcriptional repressor 1	0.93	1.57
MO000026306	GCM1	glial cells missing transcription factor 1	0.67	2.87
MO000024750	NFIC	nuclear factor I C	0	1.29

The following diagram represents the key transcription factors, which were predicted to be potentially regulating highly methylated genes in the analyzed pathology: NEUROD1, DBP and SIN3A.

3.4. Finding master regulators in networks

In the second step of the upstream analysis common regulators of the revealed TFs were identified. These master regulators appear to be the key candidates for therapeutic targets as they have a master effect on regulation of intracellular pathways that activate the pathological process of our study. The identified master regulators are shown in Table 5.

Table 5. Master regulators that may govern the regulation of highly methylated genes in Hypertension vs. Control. **Total rank** is the sum of the ranks of the master molecules sorted by keynode score, CMA score, epigenomics data. **See full table** \rightarrow

ID	Master molecule name	Gene symbol	Gene description	Total rank
MO000190566	MCF2L-isoform1(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190568	MCF2L-isoform2(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190569	MCF2L-isoform3(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190570	MCF2L-isoform4(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190571	MCF2L-isoform5(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190572	MCF2L-isoform6(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190573	MCF2L-isoform7(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000190574	MCF2L-isoform8(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000281069	MCF2L-isoform9(h)	MCF2L	MCF.2 cell line derived transforming sequence like	58
MO000480243	DARPP32(h){pT75}	PPP1R1B	protein phosphatase 1 regulatory inhibitor subunit 1B	76

The intracellular regulatory pathways controlled by the above-mentioned master regulators are depicted in Figure 5. This diagram displays the connections between identified transcription factors, which play important roles in the regulation of highly methylated genes, and selected master regulators, which are responsible for the regulation of these TFs.

Figure 5. Diagram of intracellular regulatory signal transduction pathways of highly methylated genes in Hypertension vs. Control. Master regulators are indicated by red rectangles, transcription factors are blue rectangles, and green rectangles are intermediate molecules, which have been added to the network during the search for master regulators from selected TFs. See full diagram \rightarrow

4. Finding prospective drug targets

The identified master regulators that may govern pathology associated genes were checked for druggability potential using HumanPSD^M [5] database of gene-disease-drug assignments and PASS [11-13] software for prediction of biological activities of chemical compounds on the basis of a (Q)SAR approach. Respectively, for each master regulator protein we have computed two Druggability scores: HumanPSD Druggability score and PASS Druggability score. Where Druggability score represents the

number of drugs that are potentially suitable for inhibition (or activation) of the corresponding target either according to the information extracted from medical literature (from HumanPSD[™] database) or according to cheminformatics predictions of compounds activity against the examined target (from PASS software).

The cheminformatics druggability check is done using a pre-computed database of spectra of biological activities of chemical compounds from a library of all small molecular drugs from HumanPSDTM database, 2507 pharmaceutically active known chemical compounds in total. The spectra of biological activities has been computed using the program PASS [11-13] on the basis of a (Q)SAR approach.

If both Druggability scores were below defined thresholds (see Methods section for the details) such master regulator proteins were not used in further analysis of drug prediction.

As a result we created the following two tables of prospective drug targets (top targets are shown here):

Table 6. Prospective drug targets selected from full list of identified master regulators filtered by Druggability score from HumanPSDTM database. **Druggability score** contains the number of drugs that are potentially suitable for inhibition (or activation) of the target. The drug targets are sorted according to the **Total rank** which is the sum of three ranks computed on the basis of the three scores: keynode score, CMA score and expression change score (logFC, if present). See Methods section for details. See full table \rightarrow

Gene symbol	Gene Description	Druggability score	Total rank
PPP1R1B	protein phosphatase 1 regulatory inhibitor subunit 1B	1	192
KLK2	kallikrein related peptidase 2	2	230
GRIN1	glutamate ionotropic receptor NMDA type subunit 1	25	236
ITGA3	integrin subunit alpha 3	2	300
EDNRA	endothelin receptor type A	16	368
BCR	BCR activator of RhoGEF and GTPase	4	374

Table 7. Prospective drug targets selected from full list of identified master regulators filtered by Druggability score predicted by PASS software. Here, the **Druggability score** for master regulator proteins is computed as a sum of PASS calculated probabilities to be active as a target for various small molecular compounds. The drug targets are sorted according to the **Total rank** which is the sum of three ranks computed on the basis of the three scores: keynode score, CMA score and expression change score (logFC, if present). See Methods section for details.

See full table \rightarrow

Gene symbol	Gene Description	Druggability score	Total rank
PPP1R1B	protein phosphatase 1 regulatory inhibitor subunit 1B	0.32	192
KLK2	kallikrein related peptidase 2	113.83	230
GRIN1	glutamate ionotropic receptor NMDA type subunit 1	39.24	236
NCAM1	neural cell adhesion molecule 1	1.66	273
ITGA3	integrin subunit alpha 3	5.63	300
EDNRA	endothelin receptor type A	2.73	368

Below we represent schematically the main mechanism of the studied pathology. In the schema we considered the top two drug targets of each of the two categories computed above. In addition we have added two top identified master regulators for which no drugs may be identified yet, but that are playing the crucial role in the molecular mechanism of the studied pathology. Thus the molecular mechanism of the studied pathology was predicted to be mainly based on the following key master regulators:

- CARD11
- DARPP32
- kallikrein-2

This result allows us to suggest the following schema of affecting the molecular mechanism of the studied pathology:

Drugs which are shown on this schema: Guanadrel, Fluoxetine, darolutamide, BETA-METHYLLACTOSIDE and Probenecid, should be considered as a prospective research initiative for further drug repurposing and drug development. These drugs were selected as top matching treatments to the most prospective drug targets of the studied pathology, however, these results should be considered with special caution and are to be used for research purposes only, as there is not enough clinical information for adapting these results towards immediate treatment of patients.

The drugs given in dark red color on the schema are FDA approved drugs or drugs which have gone through various phases of clinical trials as active treatments against the selected targets.

The drugs given in pink color on the schema are drugs, which were cheminformatically predicted to be active against the selected targets.

5. Identification of potential drugs

In the last step of the analysis we strived to identify known activities as well as drugs with cheminformatically predicted activities that are potentially suitable for inhibition (or activation) of the identified molecular targets in the context of specified human diseases(s).

Proposed drugs are top ranked drug candidates, that were found to be active on the identified targets and were selected from 4 categories:

- 1. FDA approved drugs or used in clinical trials drugs for the studied pathology;
- 2. Repurposing drugs used in clinical trials for other pathologies;
- 3. Drugs, predicted by PASS to be active against identified drug targets and against the studied pathology;
- 4. Drugs, predicted by PASS to be active against identified drug targets but for other pathologies.

Proposed drugs were selected on the basis of Drug rank which was computed from the ranks sum based on the individual ranks of the following scores:

- Target activity score (depends on ranks of all targets that were found for the selected drug);
- Disease activity score (weighted sum of number of clinical trials on disease(s) under study where the selected drug is known to be applied or PASS Disease activity score cheminformatically predicted property of the compound to be active against the studied disease(s));
- Clinical validity score (applicable only for drugs predicted on the basis of literature curation in HumanPSD[™] database (Tables 8 and 9), reflects the number of the highest clinical trials phase on which the drug was tested for any pathology).

You can refer to the Methods section for more details on drug ranking procedure.

Based on the Drug rank, a numerical value of Drug score was calculated, which reflects the potential activity of the respective drug on the overall molecular mechanism of the studied pathology. Drug score values belong to the range from 1 to 100 and are calculated as a quotient of maximum drug rank and the drug rank of the given drug multiplied by 100.

Top drugs of each category are given in the tables below:

Drugs approved in clinical trials

Table 8. FDA approved drugs or drugs used in clinical trials for the studied pathology (most promising treatment candidates selected for the identified drug targets on the basis of literature curation in HumanPSDTM database) See full table \rightarrow

Name	Target names	Drug score	Disease activity score	Disease trial phase
Imatinib	MAPK10, RPS6KA3, BCR, MAP4K4, BMPR1A, MARK3, IRAK3, NTRK1, NTRK3, PRKA42, KDR, AAK1, FLT4, INSR, LTK, EGFR, PRKCH, ACVR2A, PRKG1, ERBB2, CAMK2B, PRKD1, PKMYT1, PIP5K1A, IGF1R, AURKC, BMX, LCK, ALK, PIM2, DYRK1B, EPHB2, STK26, RPS6KA2, MAPK4, CSNK1G2, PAK3, INSRR, DDR1, BTK, CAMKK1, MAPK11, TGFBR2, FYN, FES, RET, ABL2, STK3	96	7	Phase 3: Hypertension, Astrocytoma, Bone Marrow Diseases, COVID-19, Cerebral Infarction, Familial Primary Pulmonary Hypertension, Fibrosarcoma, Fibrosis, Gastrointestinal Stromal Tumors, Glioblastoma, Graft vs Host Disease, Hematologic Diseases, Hypertension, Pulmonary, Idiopathic Pulmonary Fibrosis, Infarction, Ischemia, Ischemic Stroke, Leukemia, Leukemia, Lymphoid, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Leukemia, Myeloid, Leukemia, Myeloid, Chronic-Phase, Lung Diseases, Lymphoma, Lymphoma, Non-Hodgkin, Mucositis, Neoplasms, Nephrogenic Fibrosing Dermopathy, Nerve Sheath Neoplasms, Neurofibrosarcoma, Pneumonia, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma, Pulmonary Arterial Hypertension, Pulmonary Fibrosis, Recurrence, Sarcoma, Stroke
Iloprost	PLAT, PDE4D, PTGER1, PDE4A	95	12	Phase 4: Hypertension, Familial Primary Pulmonary Hypertension, Heart Failure, Hypertension, Pulmonary, Ischemia, Lung Diseases, Lung Diseases, Obstructive, Peripheral Arterial Disease, Peripheral Vascular Diseases, Pulmonary Arterial Hypertension, Pulmonary Disease, Chronic Obstructive, Sarcoidosis, Vascular Diseases
Morphine	DRD2, GRIN1, OPRK1, OPRD1, CCR2, KCNH2, GRM1, OPRM1	93	5	Phase 3: Hypertension, Abdominal Pain, Abscess, Acute Coronary Syndrome, Anemia, Anemia, Sickle Cell, Aneurysm, Aortic Aneurysm, Aortic Aneurysm, Abdominal, Apnea, Appendicitis, Arthritis, Brain Abscess, Calculi, Colic, Colorectal Neoplasms, Constriction, Pathologic, Critical Illness, Dementia, Depression, Disease, Dyspnea, Fibrosis, Flail Chest, Fractures, Bone, Fractures, Multiple, Hallucinations, Head and Neck Neoplasms, Herpes Zoster, Hyperalgesia, Idiopathic Pulmonary Fibrosis, Infarction, Intervertebral Disc Degeneration, Intestinal Neoplasms, Kidney Calculi, Leukemia, Lung Diseases, Lung Diseases, Obstructive, Lymphoma, Mucositis, Multiple Myeloma, Myelodysplastic Syndromes, Myeloproliferative Disorders, Myocardial Infarction, Nausea, Neonatal Abstinence Syndrome, Neoplasm Metastasis, Neoplasms, Neoplasms, Plasma Cell, Neuralgia, Obesity, Obesity, Morbid, Opioid-Related Disorders, Osteoarthritis, Osteoarthritis, Hip, Pain, Plasmacytoma, Precancerous Conditions, Preleukemia, Prostatic Neoplasms, Pruritus, Psychomotor Agitation, Pulmonary Disease, Chronic Obstructive, Pulmonary Fibrosis, Rectal Neoplasms, Respiratory Insufficiency, Rib Fractures, ST Elevation Myocardial Infarction, Scoliosis, Sleep Apnea Syndromes, Sleep Apnea, Obstructive, Spinal Stenosis, Spondylolisthesis, Stomatitis, Substance Withdrawal Syndrome, Syndrome, Thoracic Injuries, Vomiting, Wounds and Injuries, Wounds, Nonpenetrating
Codeine	OPRK1, OPRD1, KCNH2, OPRM1	93	5	Phase 3: Hypertension, Arthritis, Breast Diseases, HIV Infections, Infections, Intracranial Hypertension, Neoplasms, Neural Tube Defects, Osteoarthritis, Osteoarthritis, Knee, Pseudotumor Cerebri, Tooth, Impacted
Estradiol	GPER1, LIF, PGR, NTRK1, CXCR4, KCNH2, OXTR, NOS2, AR	93	5	Phase 3: Hypertension, Acne Vulgaris, Adenomyosis, Alzheimer Disease, Amenorrhea, Anorexia, Anorexia Nervosa, Arnold-Chiari Malformation, Atherosclerosis, Atrophic Vaginitis, Atrophy, Bone Diseases, Bone Diseases, Metabolic, Brain Abscess, Breast Neoplasms, Cardiovascular Diseases, Communicable Diseases, Congenital Abnormalities, Coronary Disease, Depression, Depressive Disorder, Disease, Dyspareunia, Endometriosis, Essential Hypertension, Fatty Liver, Fatty Liver, Alcoholic, Fibroma, Genetic Diseases, Inborn, Gonadal Dysgenesis, Heart Diseases, Hemorrhage, Hot Flashes, Hypogonadism, Infant, Newborn, Diseases, Infections, Infertility, Infertility, Female, Ischemia, Leiomyoma, Liver Diseases, Menopause, Premature, Menorrhagia, Menstruation Disturbances, Metabolic Diseases, Metrorrhagia, Migraine Disorders, Multiple Sclerosis, Myocardial Ischemia, Myofibroma, Myoma, Neoplasms, Nervous System Malformations, Neural Tube Defects, Non-alcoholic Fatty Liver Disease, Obesity, Osteoporosis, Pituitary Diseases, Premature Birth, Premenstrual Dysphoric Disorder, Premenstrual Syndrome, Primary Ovarian Insufficiency, Prostatic Neoplasms, Psychotic Disorders, Recurrence, Schizophrenia, Sclerosis, Sexual Dysfunction, Physiological, Spinal Dysraphism, Syndrome, Tic Disorders, Turner Syndrome, Ulcer, Urinary Tract Infections, Uterine Hemorrhage, Vaginitis, Varicose Ulcer, Vascular Diseases

The **Disease trial phase** column reflects the maximum clinical trials phase in which the drug was studied for the analyzed pathology.

Repurposing drugs

Table 9. Repurposed drugs used in clinical trials for other pathologies (prospective drugs against the identified drug targets on the basis of literature curation in HumanPSD^M database) See full table \rightarrow

Name	Target names	Drug score	Maximum trial phase
Dasatinib	BCR, MAP4K4, BMPR1A, MARK3, IRAK3, INSR, ERBB2, CAMK2B, PRKD1, PIP5K1A, IGF1R, AURKC, LCK, STK26, MAPK4, CSNK1G2, DDR1, PRKCZ, BTK, MAPK11, FES, STK3, MAPK10, RPS6KA3, NTRK1, NTRK3, PRKAA2, KDR, AAK1, FLT4, LTK, EGFR, PRKCH, ACVR2A, PRKG1, PKMYT1, BMX, ALK, PIM2, DYRK1B, EPHB2, RPS6KA2, PAK3, INSRR, CAMKK1, TGFBR2, FYN, RET, ABL2	85	Phase 4: Hematologic Neoplasms, Leukemia, Leukemia, Lymphoid, Leukemia, Myelogenous, Chronic, BCR- ABL Positive, Leukemia, Myeloid, Leukemia, Myeloid, Chronic-Phase, Lymphoma, Neoplasms, Precursor Cell Lymphoblastic Leukemia-Lymphoma
CI-1033	MAPK10, RPS6KA3, MAP4K4, BMPR1A, MARK3, IRAK3, NTRK1, NTRK3, PRKAA2, KDR, AAK1, FLT4, INSR, LTK, EGFR, PRKCH, ACVR2A, PRKG1, ERBB2, CAMK2B, PRKD1, PKMYT1, PIP5K1A, IGF1R, AURKC, BMX, LCK, ALK, PIM2, DYRK1B, EPHB2, STK26, RPS6KA2, MAPK4, CSNK1G2, ERBB4, PAK3, INSRR, DDR1, BTK, CAMKK1, MAPK11, TGFBR2, FYN, FES, RET, ABL2, STK3	85	Phase 2: Breast Neoplasms, Carcinoma, Non-Small-Cell Lung, Neoplasms
pelitinib	MAPK10, RPS6KA3, MAP4K4, BMPR1A, MARK3, IRAK3, NTRK1, NTRK3, PRKAA2, KDR, AAK1, FLT4, INSR, LTK, EGFR, PRKCH, ACVR2A, PRKG1, ERBB2, CAMK2B, PRKD1, PKMYT1, PIP5K1A, IGF1R, AURKC, BMX, LCK, ALK, PIM2, DYRK1B, EPHB2, STK26, RPS6KA2, MAPK4, CSNK1G2, ERBB4, PAK3, INSRR, DDR1, BTK, CAMKK1, MAPK11, TGFBR2, FYN, FES, RET, ABL2, STK3	85	Phase 2: Carcinoma, Non-Small-Cell Lung, Colonic Neoplasms, Colorectal Neoplasms, Neoplasms, Rectal Neoplasms
Erlotinib	MAPK10, RPS6KA3, MAP4K4, BMPR1A, MARK3, IRAK3, NTRK1, NTRK3, PRKAA2, KDR, AAK1, FLT4, INSR, LTK, EGFR, PRKCH, ACVR2A, PRKG1, ERBB2, CAMK2B, PRKD1, PKMYT1, PIP5K1A, IGF1R, AURKC, BMX, LCK, ALK, PIM2, DYRK1B, EPHB2, STK26, RPS6KA2, MAPK4, CSNK1G2, ERBB4, PAK3, INSRR, DDR1, BTK, CAMKK1, MAPK11, TGFBR2, FYN, FES, RET, ABL2, STK3	85	Phase 4: Adenocarcinoma, Adenocarcinoma of Lung, Carcinoma, Non-Small-Cell Lung, Carcinoma, Renal Cell, Disease Progression, Gastrointestinal Stromal Tumors, Lung Neoplasms, Neoplasms, Pancreatic Neoplasms
Gefitinib	MAPK10, RPS6KA3, MAP4K4, BMPR1A, MARK3, IRAK3, NTRK1, NTRK3, PRKAA2, KDR, AAK1, FLT4, INSR, LTK, EGFR, IGF2, PRKCH, ACVR2A, PRKG1, ERBB2, CAMK2B, PRKD1, PKMYT1, PIP5K1A, IGF1R, AURKC, BMX, LCK, ALK, PIM2, DYRK1B, EPHB2, STK26, RPS6KA2, MAPK4, CSNK1G2, PAK3, INSRR, DDR1, BTK, CAMKK1, MAPK11, TGFBR2, FYN, FES, RET, ABL2, STK3	85	Phase 4: Carcinoma, Non-Small-Cell Lung, Lung Neoplasms, Neoplasms

The Maximum trial phase column reflects the maximum clinical trials phase in which the drug was studied for any pathology.

Table 10. Prospective drugs, predicted by PASS software to be active against the identified drug targets with predicted activity against the studied disease(s) (drug candidates predicted with the cheminformatics tool PASS) See full table \rightarrow

Name	Target names	Drug score	Target activity score
Cyclothiazide	ALPL, GRIN1, GRIN2C, ALOX15, GRIK5, GRIA2, GRM2, GRM1, GRIA3	97	1.1
Nitrendipine	CACNA1C, TAC1, CACNA2D1, PENK, CCK, GAL, VIP	97	1.37
Darodipine	RPS6KA3, CACNA1C, RPS6KA2, ALOX15, RPS6KB2, CACNA2D1	97	1.17
Isradipine	RPS6KA3, CACNA1C, RPS6KA2, RPS6KB2, CACNA2D1	97	0.96
Moexipril	GDNF, BDNF, CNTF, NTF3, ITGB3, NTSR1	96	1.06

See full table \rightarrow

Table 11. Prospective drugs, predicted by PASS software to be active against the identified drug targets, though without cheminformatically predicted activity against the studied disease(s) (drug candidates predicted with the cheminformatics tool PASS)

Name	Target names	Drug score	Target activity score
Naringenin	MAPK10, PTGR1, BDNF, MAOB, CNTF, ALOX15, CFTR, MAPK4, MAOA, ALPL, GDNF, ALOX5, OPRK1, CYP1B1, CKB, MAPK11, CYP2E1, NTF3, CYP27A1, PRDX4, PIP5K1A, PTGIS	95	1.47
(2S)-5-hydroxy-2-(4- hydroxyphenyl)-7-methoxy-2,3- dihydro-4H-chromen-4-one	MAPK10, PTGR1, BDNF, MAOB, CNTF, CFTR, ALOX15, MAPK4, MAOA, GDNF, ALPL, ALOX5, CYP1B1, CKB, MAPK11, CYP2E1, NTF3, CYP27A1, PRDX4, PIP5K1A, PTGIS	95	1.36
2,5,7-Trihydroxynaphthoquinone	MAPK10, DYRK1B, PTGR1, DUSP22, CFTR, ALOX15, MAPK4, STAT1, PTP4A1, FASN, ALOX5, CDC14B, MAPK11, CYP27A1, DUSP14, DUPD1, DUSP9, PRDX4, PIP5K1A, BRCA1	93	1.29
2-NAPHTHALENESULFONIC ACID	PTGR1, DUSP22, PLPP3, PTP4A1, LPIN1, FASN, SOD2, CDC14B, PDHA1, DUSP14, CYP27A1, DUPD1, DUSP9, PRDX4, SOD3, PDHA2	93	1.25
Naphthalene-2,6-disulfonic acid	PTGR1, DUSP22, PLPP3, PTP4A1, LPIN1, FASN, SOD2, CDC14B, PDHA1, DUSP14, CYP27A1, DUPD1, DUSP9, PRDX4, SOD3, PDHA2	92	1.14

As the result of drug search we propose the following drugs as most promising candidates for treating the pathology under study: Imatinib, Dasatinib, Cyclothiazide and Naringenin. These drugs were selected for acting on the following targets: BCR, GRIN1 and OPRK1, which were predicted to be active in the molecular mechanism of the studied pathology.

The selected drugs are top ranked drug candidates from each of the four categories of drugs: (1) FDA approved drugs or used in clinical trials drugs for the studied pathology; (2) repurposing drugs used in clinical trials for other pathologies; (3) drugs, predicted by PASS software to be active against the studied pathology; (4) drugs, predicted by PASS software to be repurposed from other pathologies.

6. Conclusion

We applied the software package "Genome Enhancer" to a data set that contains *epigenomics* data obtained from *blood* tissue. The study is done in the context of *Hypertension*. The data were pre-processed, statistically analyzed and highly methylated genes were identified. Also checked was the enrichment of GO or disease categories among the studied gene sets.

We propose the following drugs as most promising candidates for treating the pathology under study:

These drugs were selected for acting on the following targets: BCR, GRIN1 and OPRK1, which were predicted to be involved in the molecular mechanism of the pathology under study.

The identified molecular mechanism of the studied pathology was predicted to be mainly based on the following key drug targets:

These potential drug targets should be considered as a prospective research initiative for further drug repurposing and drug development purposes. The following drugs were predicted as, matching those drug targets: Guanadrel, Fluoxetine, darolutamide, BETA-METHYLLACTOSIDE and Probenecid. These drugs should be considered with special caution for research purposes only.

In this study, we came up with a detailed signal transduction network regulating highly methylated genes in the studied pathology. In this network we have revealed the following top master regulators (signaling proteins and their complexes) that play a crucial role in the molecular mechanism of the studied pathology, which can be proposed as the most promising molecular targets for further drug repurposing and drug development initiatives.

- CARD11
- DARPP32
- kallikrein-2

Potential drug compounds which can be affecting these targets can be found in the "Finding prospective drug targets" section.

7. Methods

Databases used in the study

Transcription factor binding sites in promoters and enhancers of highly methylated genes were analyzed using known DNAbinding motifs described in the TRANSFAC® library, release 2022.1 (geneXplain GmbH, Wolfenbüttel, Germany) (https://genexplain.com/transfac).

The master regulator search uses the TRANSPATH® database (BIOBASE), release 2022.1 (geneXplain GmbH, Wolfenbüttel, Germany) (https://genexplain.com/transpath). A comprehensive signal transduction network of human cells is built by the software on the basis of reactions annotated in TRANSPATH®.

The information about drugs corresponding to identified drug targets and clinical trials references were extracted from HumanPSD[™] database, release 2022.1 (https://genexplain.com/humanpsd).

The Ensembl database release Human104.38 (hg38) (http://www.ensembl.org) was used for gene IDs representation and Gene Ontology (GO) (http://geneontology.org) was used for functional classification of the studied gene set.

Epigenomics data processing

When analyzing a list of CpG sites, we compute the fold change values between the methylation status in the studied pathology and the control set. Top 10 000 CpG sites with highest logFC values are taken to further analysis. These sites are mapped to corresponding genes, which will be further compared to the list of housekeeping genes at the step of promoter analysis.

Methods for the analysis of enriched transcription factor binding sites and composite modules

Transcription factor binding sites in promoters and enhancers of differentially expressed genes were analyzed using known DNA-binding motifs. The motifs are specified using position weight matrices (PWMs) that give weights to each nucleotide in each position of the DNA binding motif for a transcription factor or a group of them.

We search for transcription factor binding sites (TFBS) that are enriched in the enhancers under study as compared to a background set of promoters of housekeeping genes. We denote study and background sets briefly as Yes and No sets. In the current work we used a workflow considering promoter sequences of a standard length of 1100 bp (-1000 to +100). The error rate in this part of the pipeline is controlled by estimating the adjusted p-value (using the Benjamini-Hochberg procedure) in comparison to the TFBS frequency found in randomly selected regions of the human genome (adj.p-value < 0.01).

We have applied the CMA algorithm (Composite Module Analyst) for searching composite modules [7] in the promoters and enhancers of the Yes and No sets. We searched for a composite module consisting of a cluster of 10 TFs in a sliding window of 200-300 bp that statistically significantly separates sequences in the Yes and No sets (minimizing Wilcoxon p-value).

Methods for finding master regulators in networks

We searched for master regulator molecules in signal transduction pathways upstream of the identified transcription factors. The master regulator search uses a comprehensive signal transduction network of human cells. The main algorithm of the master regulator search has been described earlier [3,4]. The goal of the algorithm is to find nodes in the global signal transduction network that may potentially regulate the activity of a set of transcription factors found at the previous step of the analysis. Such nodes are considered as most promising drug targets, since any influence on such a node may switch the transcriptional programs of hundreds of genes that are regulated by the respective TFs. In our analysis, we have run the algorithm with a maximum radius of 12 steps upstream of each TF in the input set. The error rate of this algorithm is controlled by applying it 10000 times to randomly generated sets of input transcription factors of the same set-size. Z-score and FDR value of ranks are calculated then for each potential master regulator node on the basis of such random runs (see detailed description in [9]). We control the error rate by the FDR threshold 0.05.

Methods for analysis of pharmaceutical compounds

We seek for the optimal combination of molecular targets (key elements of the regulatory network of the cell) that potentially interact with pharmaceutical compounds from a library of known drugs and biologically active chemical compounds, using information about known drugs from HumanPSD[™] and predicting potential drugs using PASS program.

Method for analysis of known pharmaceutical compounds

We selected compounds from HumanPSD^M database that have at least one target. Next, we sort compounds using "*Drug rank*" that is the sum of the following ranks:

- 1. ranking by "Target activity score" (T-score_{PSD}),
- 2. ranking by "Disease activity score" (*D*-score_{PSD}),
- 3. ranking by "Clinical validity score".

"Target activity score" (*T*-score_{PSD}) is calculated as follows:

$$T\text{-}score_{PSD} = -\frac{|T|}{|T| + w(|AT| - |T|)} \sum_{t \in T} log_{10} \left(\frac{rank(t)}{1 + maxRank(T)}\right),$$

,

where *T* is set of all targets related to the compound intersected with input list, |T| is number of elements in *T*, *AT* and |AT| are set set of all targets related to the compound and number of elements in it, *w* is weight multiplier, *rank(t)* is rank of given target, *maxRank(T)* equals *max(rank(t))* for all targets *t* in *T*.

We use following formula to calculate "Disease activity score" (D-score_{PSD}):

$$D\text{-}score_{\scriptscriptstyle PSD} = \begin{cases} \sum\limits_{d \in D} \sum\limits_{p \in P} phase(d, p) \\ 0, \ D = \varnothing \end{cases}$$

where *D* is the set of selected diseases, and if *D* is empty set, D-score_{PSD}=0. *P* is a set of all known phases for each disease, phase(*p*,*d*) equals to the phase number if there are known clinical trials for the selected disease on this phase and zero otherwise.

The clinical validity score reflects the number of the highest clinical trials phase (from 1 to 4) on which the drug was ever tested for any pathology.

Method for prediction of pharmaceutical compounds

In this study, the focus was put on compounds with high pharmacological efficiency and low toxicity. For this purpose, comprehensive library of chemical compounds and drugs was subjected to a SAR/QSAR analysis. This library contains 13040 compounds along with their pre-calculated potential pharmacological activities of those substances, their possible side and toxic effects, as well as the possible mechanisms of action. All biological activities are expressed as probability values for a substance to exert this activity (*Pa*).

We selected compounds that satisfied the following conditions:

- 1. Toxicity below a chosen toxicity threshold (defines as Pa, probability to be active as toxic substance).
- 2. For all predicted pharmacological effects that correspond to a set of user selected disease(s) *Pa* is greater than a chosen effect threshold.

3. There are at least 2 targets (corresponding to the predicted activity-mechanisms) with predicted *Pa* greater than a chosen target threshold.

The maximum *Pa* value for all toxicities corresponding to the given compound is selected as the "Toxicity score". The maximum *Pa* value for all activities corresponding to the selected diseases for the given compound is used as the "Disease activity score". "Target activity score" (T-score) is calculated as follows:

$$T\text{-}score(s) = \frac{|T|}{|T| + w(|AT| - |T|))} \sum_{m \in M(s)} \left(pa(m) \sum_{g \in G(m)} IAP(g)optWeight(g) \right),$$

where M(s) is the set of activity-mechanisms for the given structure (which passed the chosen threshold for activitymechanisms Pa); G(m) is the set of targets (converted to genes) that corresponds to the given activity-mechanism (m) for the given compound; pa(m) is the probability to be active of the activity-mechanism (m), IAP(g) is the invariant accuracy of prediction for gene from G(m); optWeight(g) is the additional weight multiplier for gene. T is set of all targets related to the compound intersected with input list, |T| is number of elements in T, AT and |AT| are set set of all targets related to the compound and number of elements in it, w is weight multiplier. "Druggability score" (D-score) is calculated as follows:

$$D$$
-score $(g) = IAP(g) \sum_{s \in S(g)} \sum_{m \in M(s,g)} pa(m)$

where S(g) is the set of structures for which target list contains given target, M(s,g) is the set of activity-mechanisms (for the given structure) that corresponds to the given gene, pa(m) is the probability to be active of the activity-mechanism (m), IAP(g) is the invariant accuracy of prediction for the given gene.

8. References

- 1. Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways. *BMC Bioinformatics*. **2006**;7(S2), S13. doi:10.1186/1471-2105-7-s2-s13
- Stegmaier P, Voss N, Meier T, Kel A, Wingender E, Borlak J. Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer. *PLoS ONE.* 2011;6(3):e17738. doi:10.1371/journal.pone.0017738
- 3. Koschmann J, Bhar A, Stegmaier P, Kel A, Wingender E. "Upstream Analysis": An Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray Data. *Microarrays.* **2015**;4(2):270-286. doi:10.3390/microarrays4020270.
- Kel A, Stegmaier P, Valeev T, Koschmann J, Poroikov V, Kel-Margoulis OV, and Wingender E. Multi-omics "upstream analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. *EuPA Open Proteom.* 2016;13:1-13. doi:10.1016/j.euprot.2016.09.002
- 5. Michael H, Hogan J, Kel A et al. Building a knowledge base for systems pathology. *Brief Bioinformatics.* **2008**;9(6):518-531. doi:10.1093/bib/bbn038
- Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. *Nucleic Acids Res.* 2006;34(90001):D108-D110. doi:10.1093/nar/gkj143
- 7. Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. *Nucleic Acids Res.* **2003**;31(13):3576-3579. doi:10.1093/nar/gkg585
- Waleev T, Shtokalo D, Konovalova T, Voss N, Cheremushkin E, Stegmaier P, Kel-Margoulis O, Wingender E, Kel A. Composite Module Analyst: identification of transcription factor binding site combinations using genetic algorithm. *Nucleic Acids Res.* 2006;34(Web Server issue):W541-5.
- Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E. TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. *Nucleic Acids Res.* 2006;34(90001):D546-D551. doi:10.1093/nar/gkj107
- Boyarskikh U, Pintus S, Mandrik N, Stelmashenko D, Kiselev I, Evshin I, Sharipov R, Stegmaier P, Kolpakov F, Filipenko M, Kel A. Computational master-regulator search reveals mTOR and PI3K pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic action of p53 activator Nutlin-3. *BMC Med Genomics.* 2018;11(1):12. doi:10.1186/1471-2105-7-s2-s13
- 1. Filimonov D, Poroikov V. Probabilistic Approaches in Activity Prediction. Varnek A, Tropsha A. *Cheminformatics Approaches to Virtual Screening.* Cambridge (UK): RSC Publishing. **2008**;:182-216.
- Filimonov DA, Poroikov VV. Prognosis of specters of biological activity of organic molecules. Russian chemical journal. 2006;50(2):66-75 (russ)
- Filimonov D, Poroikov V, Borodina Y, Gloriozova T. Chemical Similarity Assessment Through Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descriptors. *ChemInform.* 1999;39(4):666-670. doi:10.1002/chin.199940210

Thank you for using the Genome Enhancer!

In case of any questions please contact us at support@genexplain.com

Supplementary material

- 1. Supplementary table 1 Detailed report. Composite modules and master regulators (highly methylated genes in Hypertension vs. Control).
- 2. Supplementary table 2 Detailed report. Pharmaceutical compounds and drug targets.

Disclaimer

Decisions regarding care and treatment of patients should be fully made by attending doctors. The predicted chemical compounds listed in the report are given only for doctor's consideration and they cannot be treated as prescribed medication. It is the physician's responsibility to independently decide whether any, none or all of the predicted compounds can be used solely or in combination for patient treatment purposes, taking into account all applicable information regarding FDA prescribing recommendations for any therapeutic and the patient's condition, including, but not limited to, the patient's and family's medical history, physical examinations, information from various diagnostic tests, and patient preferences in accordance with the current standard of care. Whether or not a particular patient will benefit from a selected therapy is based on many factors and can vary significantly.

The compounds predicted to be active against the identified drug targets in the report are not guaranteed to be active against any particular patient's condition. GeneXplain GmbH does not give any assurances or guarantees regarding the treatment information and conclusions given in the report. There is no guarantee that any third party will provide a refund for any of the treatment decisions made based on these results. None of the listed compounds was checked by Genome Enhancer for adverse side-effects or even toxic effects.

The analysis report contains information about chemical drug compounds, clinical trials and disease biomarkers retrieved from the HumanPSD[™] database of gene-disease assignments maintained and exclusively distributed worldwide by geneXplain GmbH. The information contained in this database is collected from scientific literature and public clinical trials resources. It is updated to the best of geneXplain's knowledge however we do not guarantee completeness and reliability of this information leaving the final checkup and consideration of the predicted therapies to the medical doctor.

The scientific analysis underlying the Genome Enhancer report employs a complex analysis pipeline which uses geneXplain's proprietary Upstream Analysis approach, integrated with TRANSFAC® and TRANSPATH® databases maintained and exclusively distributed worldwide by geneXplain GmbH. The pipeline and the databases are updated to the best of geneXplain's knowledge and belief, however, geneXplain GmbH shall not give a warranty as to the characteristics or to the content and any of the results produced by Genome Enhancer. Moreover, any warranty concerning the completeness, up-to-dateness, correctness and usability of Genome Enhancer information and results produced by it, shall be excluded.

The results produced by Genome Enhancer, including the analysis report, severely depend on the quality of input data used for the analysis. It is the responsibility of Genome Enhancer users to check the input data quality and parameters used for running the Genome Enhancer pipeline.

Note that the text given in the report is not unique and can be fully or partially repeated in other Genome Enhancer analysis reports, including reports of other users. This should be considered when publishing any results or excerpts from the report. This restriction refers only to the general description of analysis methods used for generating the report. All data and graphics referring to the concrete set of input data, including lists of mutated genes, differentially expressed genes/proteins/metabolites, functional classifications, identified transcription factors and master regulators, constructed molecular networks, lists of chemical compounds and reconstructed model of molecular mechanisms of the studied pathology are unique in respect to the used input data set and Genome Enhancer pipeline parameters used for the current run.